File No. S360-31
Form Y28-6610-2

Program Logic

IBM System/360 Operating System
Linkage Editor (E)

Program Logic Manual

Program Number 360S-ED-510

This publication describes the internal logic of the
15K and 18K versions of the 1level E 1linkage editor.
The linkage editor combines and edits modules to
produce a single load module that can be 1loaded into
main storage by the control program. The linkage
editor operates as a processing program rather than as
a part of the control program.

This program logic manual is directed to the IBM
customer engineer who is responsible for program main-
tenance. It can be used to locate specific areas of
the program, and it enables the reader to relate these
areas to the corresponding program listings. Because
program logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program-maintenance
responsibilities.

Restricted Distribution

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

PREFACE
This publication provides customer The major divisions of the prdjram and
engineers and other technical personnel the relationships among them are also
with information describing the internal described in this section.
organization and 1logic of the 1level E
linkage editor. It is part of an inte- 2. B section describing each major divi-
grated library of IBM System/360 Operating sion of the 15K and 18K versions of
System Program Logic Manuals. Other publi- linkage editor E. Each major division
cations that are required for an under- is discussed in sufficient Jetail to
standing of the linkage editor are: enable the reader to understand its
basic functions, and to provide a
IBM System/360 Operating System: Intro- frame of reference for the comments
duction to Control Program Logic, Pro- and coding supplied in the program
gram Logic Manual, Y28-6605 listing. Common data, such as tables,
control blocks, and work areas, are
IBM System/360 Operating System: Con- discussed only to the extent required
cepts and Facilities, C28-6535 to understand the logic of the major
divisions. Flowcharts are included at
iBM System/360 Operating System: the end of this section.
Assembler Langquage, C28-6514
3. An Appendix, containing:
The reader should also refer to the
co-requisite publication: IBM_ System/ a. The input conventions and record
360 Operating System: Linkage Editor formats for the linkage editor.
and Loader, C28-6538
b. The layouts of tables, which may
not be essential for an under-
This manual consists of three parts: standing of the basic logic of the
program, but are essential for
1. An Introducticn, describing the 1link- analysis of storage dumps.
age editor as a whole, including its
relationship to the operating system. If more detailed information is
regquired, the reader should refer to the
comments, remarks, and coding in the 1link-

age editor program listings.

Third Edition (June 19€7)

The specifications contained in this publication as amended by Technical
Newsletter Y¥28-6400, dated July 23, 1969, correspond to Release 18 of

| IBM System/360 Operatirg System.

Changes are periodically made to the specifications herein; any such
changes will be reported 1in subsejuent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM

representative or to the IBM branch office serviny your locality.

Comments may be addressed to IBM Corporation, Projramming Publications,
1271 Avenue of the Americas, New York, New York 10020.

@ International Business Machines Corporation 1969

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

Section 1: Introduction
Purpose of Linkage Editor
Relationship to the Operating System . .
General Description . . . < ¢« &
Module Structure . .« . ¢ ¢ ¢ ¢ .+ o o
External Symbol Dictionary
Relocation Dictionary
Composite Dictionaries
Options . . « o @ @ ®w © @ s @ = ®
Module Attrlbutes e e e e e e e e o o
Main Storage Hierarchy Support
Major Divisions of Linkage Editor . . .
Initial Processing+ « . .
Input Processing (First Pass)
Intermediate Processing . . «. .+ « < «
Second Pass ProcessSing . « « « « « « @
Final Processing « « « « o o o o« o « «
Input/Output Flow « « . « . .
Internal Data Flow . . . <« <« &« « ¢ & o «

Section 2: Discussion of Major
Divisions . . .+ ¢ ¢ 4 ¢ ¢ o o o .
Initial Processor . . - e . - .
Main Storage Allocatlon - 15K and 18K
Level E . .
Input ProCessor .« . « o« o o « « o o o «
Object Module Processor . . « « « « .
Load Module ProCesSSOr .« « « « « o« = =
ESD Processor . .« « « « o « o « o « =«

ESD Record Types . . . et e o e
CESD Record Types and Subtypes « - .
ESD Processing . . . - . -

TXT and RLD Processor - 15K and 18K
LeVEl E ¢ v v 4 o o o o o o o o« o o =
TXT Processing . o« o« ¢ o 4 o o « « .
Processing Out-of-Order Text
RLD Processing . « « « o« o o o o s« «
End ProCesSsSOr .« « o o« « o o o o o « =
Control Statement Scanner
control Statement Processors
Include Processor . . .
Automatic Library Call Processor . . .
Address Assignment Processor
ENTAB Size Determination Routine . .
Entry ProCessor . « « « ¢« « « o« o o
Intermediate Output Processor
Second Pass Processor . . - - « .
Second Pass Operation - 15K and 18K
Level E & ¢ v v ¢ e o o o o o o « « =
Relocation of Address Constants . . .
Relocation of Non-Branch Type
(A-Type) Address Constants
Relocation of Branch Type (V -
Type) Address Constants
ENTAB Creation e e e e o o
"Split" Address Constants - Level E
Relocation Routine - Level E
Final Processor - 15K and 18K Level E .
Error Logging . < ¢ o ¢ 4 ¢ o ¢ o . .
Input/Output Error Handling
Module MAP and Cross—-Reference Table .

e e * e = &

VOO

CONIENTS
LEVEL E -- FLOWCHARTS . « « « « « =« . . 57
Microfiche Directory 57
Appendix A: Reference Data For Level
E Linkage Editor ¢ ¢ <« o« =« « « « 90
Input Conventions « « « « « . . 90
Record Formats +« « « « « « . . 91
Record Formats - Level E 92
SYM Input Record (Card Image) . . . 92
ESD Input Record (Card Image) . . . 92
Text Input Record (Card Image) . . . 93
RLD Input Record (Card Image) . . . 93
END Input Record - Type 1
(Card Image) .« « ¢ o o « o « « « - - 94
END Input Record - Type 2
(Card Image) . . « « o« o« o« « « « « <« 94
SYM Record - (Load Module) 96
CESD Record - (Load Module) 9o
Scatter-Translation Record 96
Control Record - (Load Module) . . . 98
Relocation Dictionary Record -
(Load Module) 99
Control and Relocation Dictionary
Record - (Load Module)100
Reference Data For Initial
Processing - 15K and 18K Level E . . .101
All Purpose Table 2101
Main Storage Allocation Table . . <106
Minimum Table Area for Processing
Non-Overlay Programs107
Expansion of Table Area Into Extra
Available Main Storage
(Non-Overlay Processing)107
Minimum Table Area for Processing
Overlay Programs . . « « . « + « . .108
Expansion of Table Area Into Extra
Available Main Storage (Overlay
Processing) - . 109
Table of Buffer Slzes and Table
SIZeS 4 @ i 4 4 4 e e 4 e o & . . <110
Reference Data for Input Processing
= Level E . . . « ¢ o & ¢ « & <« « . 2111
Alias Table111
Calls List o ¢ & ¢ v & « o o « . - 111
Calls List . . . e e e e e e - . <111
Composite External Symbol
Dictionary (CESD) -- Internal
Format« . . ¢ ¢« ¢ + « . . 112
Normal Combination of Internal
CESD TYPES « « o o« o « « « « « « « <113
Delink Table114
Downward Calls List114
Renumbering Table114
Relative Relocation Constant Table .114
RLD Note List115
Segment Length Table115
Text Input/Output Table116
Text Note List116
Reference Data for Intermediate
Processing -- Level E117
Segment Table (SEGTAB)117

Half External Symbol Dictionary .
High ID Table . . < . « <« « <« <« .
Reference Data for Second Pass
Processing -- Level E
Entry List . . e e e e e e
Entry Table (ENTAB) « o o o e a @
Text Table I « & « &« « o « o« « « &
Text Table II . . . « e o e <« =
Reterence Data for Flnal Processing
—— Level E . . ¢ 4 4 o ¢ e o o o e =
Partitioned Organization Directory
Record e e e e e e e e e
Module Attrlbutes e e e e e e e =
Partitioned Organization Directory
Record « v o o v v o o o o o o « =

.118
.118

-119
.119
-119
.120
.120

-121

.121
.122

.123

XADDCESD Table
XAD2CESD Table
Table « . . .
List . . <« ¢ « < &« < &
Overlay Tree Structure --

Tree Structure

Level E Linkage Editor -- 18K

Overlay Tree Structure .

Object Module -- Control Section

Cross Reference Table .

General Register Contents at Entry

to Modules -- Level E .

Table Construction and Usage

Linkage Editor E

Index .« o« o o o o o « o« =

Level E
Level E Linkage Editor - 15K Overlay

-

-

-

-

124
.124
.124
.124
.125
.125
.126
.127
<127
.130

-131

FIGURES

Figure 1. Linkage Editor

Processing - Simple Case « o o o @
Figure 2. Combining Control
Dictionaries . - e o o o o @

Figure 3. Linkage Editor
Processing - Using Overlay and

Test Options e o o = o o o o = = @
Figure 4. Linkage Editor
Processing - Using Scatter Load

and Test Options e e s s o o o o
Figure 5. Input/Output Flow . . .
Figure 6.
Figure 7. Level E Linkage Editor
Organization e e o o o o s s s e @
Figure 8. Control Statement

Scanner Operation . . . ¢« ¢ o « « «

Figare 9. Include Statement
Processing for a Sequential Data
St @ 4 4 e 4 e e 4 e e s e e s e .
Figure 10. Include Statement
Processing With Nested Members .« -
Figure 11. Overlay Statement
Processing - .

Figure 12. Library Statement
Processing © » e e s o s o e o = @
TABLES

Table 1. Incompatible Module

Attributes . &« & ¢ ¢ 4 4 e 4 . - o .

Table 2. General Register
Information - Object Module

Processing . . - .- . ~ e e e =

Table 3. Record Types and

Associated ProcessOrS . o« o o o o «

Internal Data Flow - .

11

12
16
18

32

33
33
34
36

ILLUSTRATIONS

Figure 13. Include Processing .
Figure 14. Automatic Library Call
Processing e e e e s e e e s o =
Figure 15. ENTAB Size
Determination
Figure 16. Processing of Alias

Symbols by the ENTRY Processor -
Figure 17. Writing
Scatter/Translation Records . . .
Figure 18. Non-Branch Tyre
Address Constants - Relative
Relocation « o o ¢ ¢ ¢ ¢ o o o = =
Figure 19. Non-Branch Type
Address Constants - Absolute
Relocation e o o o e s s = = e @
Figure 20. Non-Branch Type
Address Constants - Absolute and
Relative Relocation . « o« o - . .
Figure 21. Example of Delinking
Figure 22. Entry List Processing

Figure 23. ENTAB Creation e e e
Figure 24. Split Address
Constants in the Second Pass Text
Buffer © e e o o o o e e a = = =
Figure 25. Building Error
Messages (Level E) e o e o o @
Table 4. General Register

Information - Load Module
Processing « « ¢« ¢ ¢ ¢ 4 o 4 o o =
Table 5. Flag Field Processing .
Table 6. Relationship of RLD
Flag Field to Relocation
Table 7. Error Message —-- Module
Cross Reference Table

37

38

4o

u1

4y

46

24
31

54

56

Form ¥28-6610-2

Page revised 7/23/69 by TNL Y28-6400

CHARTS

Chart AA.
Chart BA.
(IEWLEINT)
Chart CA.
(IEWLEINP)
Chart CB.
(IEWLEMDI)
Chart CC.
(INP270) .
Chart CD.
Chart CE.
Chart CF.
(IEWLCESD)
Chart CG.
{IEWLCESD)
Chart CH.
(IEWLERAT)
Chart CI.
(IEWLERAT)
Chart CJ.
(IEWLERAT)
Chart CK.
Chart CL.

Major Divisions
Initial Processor

Input Processor

Object Module Processor
L,oad Module Processor
SYM Processor (IEWLCSYM)
ESD Processor (IEWLCESD)
ESD Processor
(Continued) . .« « . « <« .
ESD Processor

(Continued) . . . « . <« «
TXT and RLD Processor
TXT and RLD Processor
(Continued) « « «
TXT and RLD Processor
(Continued)
END Processor (IEWLCEND)
control Statement

Scanney (IEWLCSCN) « o o o « o« « « =

Chart CM.

Scanner (IEWLCSCN)

Chart CN.
Chart CO.
{IEWLCINC)

control Statement
(Continued) . . .
Read 8 Routine
Include Processor

® e ®© e @ e e e & @« a ® o

58

59

60

61

62

64

65

66

67

68

69
70

71

72
73

T4

Chart CP.

Automatic Library Zall

Processor (IEWLCAUT)

Chart CQ.
(LIBOP)
Chart DA.

Library Open Routin

Address Assignment

Processor (IEWLEADA)

Chart DB.
Chart DC.

(IEWLCENT)

Chart DD.

(IEWLCENT)

Chart EA.

IEWLCENS Routine . .
Entry Processor
Entry Processor
(Continued)
Intermediate Output

Processor (IEWLEOUT)

Chart FA.

(IEWLESCD)

Chart FB.

(IEWLESCD)

Chart FC.
Chart FD.

(Continued)

Chart FE.

(Continued)

Chart GA.

(IEWLCFNL)

Chart GB.

(IEWLELOG)

Chart GC.

(IEWLCMAP)

| Chart GD.

Second Pass Processor
Second Pass Processor
(Continued)
Relocation Routine .
Relocation Routine
Relocation Routine
Final Processor

Error Logging Routine
Module Map Processor

SYNAD Routine

75
76

717
78

79

80

81

82

83
84

85

86

87

88

89

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1731768

This section provides general informa-
tion describing the purpose, organization,
and internal operation of the linkage edi-
tor, and its relationship to the operating
system.

The level E linkage editor is available
in 15K and 18K versions; they differ in
speed, table sizes, and overlay structure.
All versions of the linkage editor operate
in essentially the same manner.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the proces-
sing programs of IBM System/360 Operating
System. It is a service program used in
association with the 1language translators
to prepare machine-language programs from
symbolic-language programs written in FOR-
TRAN, COBOL, report program generator, the
assembler language, or PL/I. Linkage edi-
tor processing is a necessary step that
follows source program assembly or
compilation.

Linkage editor processing allows the
programmer to divide his program into sev-
eral parts, each containing one or more
control sections. Each part may then be
coded in the programming language best
suited to it and may then be separately
assembled or compiled by a language trans-
lator (under the rules applicable to each
language translator).

The primary purpose of the linkage edi-
tor is to combine and link object modules

(the output of the language translators)
into a load module in which all cross
references between control sections are

resolved as if they had been assembled or
compiled as one module. The load module
produced by the linkage editor consists of
executable machine-language code in a for-
rat that can be loaded into main storage
and relocated by program fetch.

In addition to combining and linking
object modules, the linkage editor performs
the following functions:

e Library Call Processing. Modules (such
as standard subroutines) stored in a
library can be placed in the input to
linkage editor, either automatically or
upon request. If unresolved external
references remain after all input to
the linkage editor is processed, an

SECTION 1: INTRODUCTION

call routine retri-
required to resolve

automatic library
eves the modules
the references.

e Program Modification. Control sections
can be replaced, deleted, or rearranged
(in overlay programs) during linkage
editor processing, as directed by link-
age editor control statements. Common

control sections generated by the FOR-
TRAN, PL/I, and assembler language
translators are provided locations

within the output load module.

e Overlay Module Processing. Linkage
editor prepares modules for overlay by
assigning relative locations within the
module to the overlay segments and by
inserting tables to be used by the
overlay supervisor during execution.

e Options and Error Messages. The link-

age editor can:

1. Process opecial options that over-
ride automatig library calls or
the effect of minor errors.

2. Produce a list of linkage editor
control statements that were
processed.

3. Produce coded diagnostic messages
and a directory describing those
diagnostic messages that were

printed out during linkage editor
processing.

4. Produce a module map Or Cross-

reference table of control sec-
tions in the output load module.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same rela-
tionship to the operating system as any
other processing program. Control is
passed to the 1linkage editor in one of

three ways:

1. As a job step, when the linkage editor
is specified on an EXEC Jjob control
statement in the input stream.

2. As a subprogram, via the execution of
a CALL macro instruction (after execu-
tion of a LOAD macro instruction), a
LINK macro instruction, or an XCTL
macro instruction.

Section 1: Introduction 7

3. As a subtask, in multitasking systems,
via execution of the ATTACH macro
instruction.

GENERAL DESCRIPTION

Linkage editor input may consist of a
combination of cbject modules, load
modules, and linkage editor control state-

ments. The prime function of the linkage
editor is to combine these modules, in
accordance with requirements stated on con-
trol statements, into a single output load

module that can be relocated and loaded
into main storage by program fetch for
execution. Output load modules are placed

in partitioned data sets (libraries).

Each module to be processed by 1linkage
editor has an origin that was assigned

during assembly, during compilation, or
during a previous execution of the linkage
editor. Each module in the input to 1link-

age editor may contain symbolic references
to control sections in other modules; such
references are called external references.

To produce an executable load

module, the linkage editor:

output

1. Assigns relative main storage
addresses to the control sections to
be included in the output module.
Since each input module has an origin
that was assigned independently by a
language translator, the order of the
addresses in the input is unpredict-
able. (Two input modules, for
example, may have the same origin.)
Linkage editor assigns an origin to
the first control section and then
assigns addresses, relative to this
origin, +to all other control sections
in the output.*® Each item in a control
section 1is relocated the same number
of bytes as the control section
origin.

external references in the
modules. Cross references
between control sections in different
modules are symbolic, and must be
resolved (translated into relocatable
machine addresses), relative to the
contiguous main storage addresses
assigned to the output 1load module.
These symbolic cross-references are
made by means of address constants.
The 1linkage editor calculates the new
address of each relocatable expression

2. Resolves
input

1If the program is in overlay, an origin is
assigned to the first: control section in
each segment. Within each segment, conti-
guous addresses are assigned relative to
the segment origin.

in a control section and determines
the assigned origin (value) of the
item to which it refers.

Linkage editor processing is affected by
specified options, operations requested on
control statements, module attributes con-
tained in partitioned data set directories,
and control information contained within
the modules themselves. The following
paragraphs describe the relationship of
module structure and module attributes to
linkage editor processing.

MODULE STRUCTURE

Object modules and load modules have the
same basic logical structure (see Figure
1) . Each consists of:

¢ Control dictionaries, containing the
information necessary to resolve sym—
bolic cross references between control
sections of different modules, and to
relocate address constants.

e Text, containing the instructions and
data of the program.

*» An end of module (EOM) indicator (END
statement in object modules; EOM indi-
cation in load modules).

translator wusually pro-
of control dictionaries:
(ESD) and a

Each language
duces two kinds
an external symbol dictionary
relocation dictionary (RID). An obiject
module always contains an ESD; a load
module contains an ESD, unless it is marked
with the "not editable" attribute. Object
and load modules wusually contain an RILD
(unless there are no relocatable address
constants in the module). A control dic-
tionary entry is generated whenever an
external symbol, an address constant, or
the beginning of a control section is
processed by a language translator.

Input Qutput

Object Module Load Module
BN
ESD ::: CESD
Linkage Control
™T Editor ontro
RLD S~ | TXT
END EOM/RLD
Figure 1. Linkage Editor Processing -

Simple Case

External Symbol Dictionary

The external symbol dictionary contains
entries for all external symbols defined or
referred to within a module. (An external
symbol is one that is defined in one module
and can be referred to in another.) Each
entry identifies a symbol, or a symbol
reference, and gives its location, if any,

within the module. When combining input
modules, linkage editor resolves references
between different input modules by matching
the referenced symbols to defined symbols;
it does this by searching for the external
symbol definitions in each input module's
ESD. There is an ESD entry for each named
control section and each named common area.
The ESD also contains entries that identify
unnamed control sections and unnamed common
areas.

Relocation Dictionary

The relocation dictionary (RLD) lists
all relocatable address constants that must
be modified when the linkage editor pro-
duces an output load module. The linkage
editor uses the RLD whenever it processes a
module. The RLD is also used to adjust the
value of address constants after program
fetch reads an output load module from a
library and loads it into main storage for
execution. The RLD contains at least one
entry for every relocatable address con-—
stant in a module. An RLD entry identifies
an address constant by indicating both
its location within a control section and
the external symbol (in the ESD) whose
value must be used to compute the value of
the address constant.

Composite Dictionaries

An output load module is composed of all
input object modules and input load modules
processed by the 1linkage editor (except
those that are replaced or deleted). The
control dictionaries of an output module
are therefore a composite of all the con-
trol dictionaries in the linkage editor
input. The control dictionaries of a 1load
module are called the composite ESD (CESD)
and the RLD.

Figure 2 shows how the control dic-
tionaries of two input modules are combined
into composite dictionaries by the linkage
editor. The control dictionaries and their
associated text are interrelated through a
system of line numbers and pointers.
Within an input module, each ESD item on
which an address constant may depend has a
1line number (ESD identifier, or ESD 1ID);
the 1line number indicates the position of
the item, relative to the other ESD items
associated with the text.?' Every item of

text in an object or 1locad module has
associated control information that
describes it. This control information

includes the ESD ID of the ESD item for the

1In an object module, one type of ESD item
(LD) may not have associated text or
address constants that depend on it.
(Refer to "ESD Processor.") Such ESD items
are excluded from the numbering system.

control section that contains the text.
(In Figure 2, the ESD ID of the text itemnm
that contains X and Y points to line 1 of
the ESD for input module 1. The ESD ID of
the text item containing Z points to line 1
of the ESD for input module 2.)

Each RID item must point to two ESD
items:

1. The ESD item for the symbol on which
the address constant depends. This is
referred to by the RLD relocation
pointer (R pointer).

2. The ESD item for the control section
that contains the address constant.
This is referred to by the RLD posi-

tion pointer (P pointer).

In input module 1, X and Y are address
constants. X refers to the ESD item for
the control section in which it resides
(CSECT2) ; therefore, both pointers of its
associated RLD item refer to the ESD entry
for the control section (line 1) . Y refers
fo an external reference symbol (CSECTC) ;
therefore, the R pointer of its associated
RLD points to the ESD entry for the extern-
al reference (line 2), whereas the P point-

er refers to the ESD entry for its control
section (line 1).
When the linkage editor combines the

input modules, it must maintain this system
of pointers by renumbering the ESD items to

reflect their relative positions in the
CESD of the output module. It must also
update the RLD pointers and control infor-

mation for the text so that they refer to
the renumbered CESD items; the resulting
CESD and RLD items are shown in Figure 2.

Note: Figure 2 1is intended to show only
the relationship between ESD, text, and RLD
items before and after linkage editor pro-—
cessing; the output module structure shown
applies only to the level E linkage editor.

Options

Module
selected options.

structure also depends on
Figure 1 shows a simple
case in which a single object module,
containing only one control section, is
processed by the linkage editor for block
loading.

Figure 3 shows the processing of an
object module and a load module, each
containing several control sections. In
this example, test translator macro
instructions were included in an assembler
language source program and test symbol
(SYM) records were produced by the assembl-
er language translator. The TEST and over-
lay options have been specified on the
execute (EXEC) statement and overlay con-

Section 1: Introduction 9

Form Y28-6610-2, Page Revised by TNL Y28-2301,

Input Module 1
ESD
Symbol Type | Origin :.Sngth/
———» CSECT A SD 000 500 _re——r
—® _CSECT C ER | 000 0
CSECT B SD | 500 1000
T 300
X X 400
; AV]
T
X
T
RLD
R P Flag Address
T o] 1w F 300 \\\‘
T2 [T le F 400 —
\ A\
Input Module 2
ESD
Symbol Type |Origin |'.I§ngth
» CSECT C | SD 000 2000

r
B

RLD

F R_| P [Flag | Address |
T o T o F T 200

N J

e Figure 2. Combining Control Dictionaries

trol statements have been included in the
input +to 1linkage editor. With these
options, the output load module produced by
the linkage editor contains:

» SYM records to be used by the test
translator. (If the TEST option is not
specified on the EXEC statement, SYM
records in input are not included in
the output load module) . These records
contain blocked SYM and ESD statements
created during a previous execution of
linkage editor. SYM records in 1load
modules are passed through the linkage
editor unmodified to the output device.

s A composite ESD. CESD records contain
the ESD items for the module. There is
a maximum of 15 ESD items per record on
the output device. The first eight
bytes of the CESD record contain con-
trol information pertaining to the ESD
items in the record. This information
consists of the ESD ID of the first ESD
item and the number of bytes of ESD
items in the record.

e A control record, or a composite
control/RID record, preceding each text
record. The RLD portion, if present,
contains the RLD items used to relocate

10

Linkage
Editor

1731768

* Output Module

Symbol Type | Origin :'Sngth /
CSECT A SDh 000 500
CSECT C sD 500 2000
CSECT B SD 2500 1000

—]
| B
L
J— ;I'(300 400
ik
~N RLD
R P Flag Address
¢ 1 ¢ |1 F 300 e
™ 2 'Y F 400 ot

RLD
P [Flag | Address]
2|

F [700 e

(

—-x

the previous text.?' The control portion
may contain:

1. An end of segment (EOS) indication,
if the following text record is the

last text record of an overlay
segment.?
2. An end of module (EOM) indication,

if the following text record is the
last text record of the module.?2

3. The number of bytes of RLD informa-
tion that follow, if it is a compo-
site control/RLD record.

4. The number of bytes of control
information.
1If there is a large number of RLD items

for the previous text, there may be several
RLD records preceding the next text record.
The last of these is a control/RLD record.

2If there are no RLD items for the last

text record, the control record that pre-
cedes the text contains the EOS or EOM
indication. If there are RLD items, the
EOS or EOM follows the text record. (See

Figure 3.)

Object
Modules

Form Y28-6610-2, Page Revised by TNL Y28-2356,

Input

Load
Module

SYM M
CESD

Control
Record
SEGTAB
Control
Record

TXT

Control /RLD/
Record
ENTAB
ECS/
RLD/Record
Control
Record

XT

Contr ol/RLD
Record
ENTAB
EQS/

RLD Record
Control
Record

* TXT

EOM/

RLD

Note

List Y,

SYM

TXT
END
ESD
T
END
ESD
XT
RLD
END

* RLD items exist for previous TXT record;
therefore, EOM/RLD follows TXT record.

** No RLD items for last TXT record;
therefore, EOM precedes TXT record.

Any overlay statements in the load module
are ignored.

Figure 3.

The control portion also contains the
IDs of the control sections in the
following text record, the number of
bytes of text for each 1ID, and a
channel command word (CCW). The chan-
nel command word contains the address
assigned by the linkage editor to the
first byte of that record, plus the
total 1length of the record. This
information is used by program fetch to
read the following text.

Text for each control section. Text
records contain the code and data for
the module. In overlay, the linkage
editor produces two special types of
text records, the segment table (SEG-
TAB) and entry table (ENTAB). The
SEGTAB, located in the root segment, is
used by the overlay supervisor to keep
track of the relationship of segments
during execution. The ENTAB is a

Linkage
Editor

the scatter loading and test options
requested.
load module ccntains:

11/15/68

Qutput

Load
Module

SYmM
CESD
Control
Record
SEGTAB
Control
Record

™1

Control/
RLD Record
ENTAB
EOS/

RLD Record
Control
Record
X1
Control,”
RLD Record
ENTAB
EQCS/

RLD Record
Control

| Record

! TXT

Segment 1
(Root
Segment}

Segment 2

Control/
RLD Record
ENTAB
EOS/

RLD Record
Control/
EOM

TXT

Segment N

Note
List

Linkage Editor Processing - Using Overlay and Test Options

separate control section that may Le
created by the linkage editor in each
overlay segment. An ENTAB is used by
the overlay supervisor to determine the
segment to be loaded when a segment not
in the path is referred to.

A _ note 1list. The note list gives the
locaticn of each overlay segment in the
output module library.

Figure U4 shows the module structure when
are
With these options, the output

e SYM records.

e A composite ESD.

e A scatter/translation

record used by

program fetch to compute the relocated

Section 1: Introduction 11

Form ¥28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Input

SYM
CESD

Scatter
Translation
Record

TXT

END
ESD

Object
Modules

Load
Module

Control

TXT
Control/RLD
TXT

Control /RLD
TXT
EOM/RLD

TXT

RLD
END

;7777 TN

e

Figure 4.

addresses required for scatter loading
the module into the main storage. The
record contains a scatter table and a
translation table. The scatter table
is a list of control section addresses;
the translation table correlates the

CESD entry for each control section
with the address indicated in the
scatter table. (When a load module in

scatter format is processed again by
the linkage editor, this information is
ignored.)

¢ Text for ezch control section, preceded
by a control/RLD record describing it.
(Any RLDs pertaining to a text recoxd
are contained in the control/RLD record
that follows it.)

e An EOM indication that marks the end of
the module.

The Appendix (Section 3) contains the

format of each record type.

MODULE ATTRIBUTES

when the linkage editor generates a load
module in a library (partitioned data set)
it places an entry for the module in the
PDS directory. This entry contains "attri-
butes" describing the structure, content,
and logical format of the load module. The
control program uses these attributes to
determine how a module is to be 1loaded,
what it contains, if it 1is executalkle,
whether it is executable more than once
without reloading, and if it can be
executed by concurrent tasks.

Some module attributes can be specified
by the programmer; others are specified by

12

Output

SYM

CESD

Scatter
Load Translation
Module Record

Control

TXT

Linkage
Editor

Control /RLD
TXT

%

e

~———
Control /RLD
T

EOM/RLD

Linkage Editor Processing - Using Scatter Load and Test Options

the linkage editor as a result of informa-
tion gathered during processing. In the
following list, attributes marked with an
asterisk cannot be specified by the
programmer :

e Reenterable. A reenterakle module can
be executed by more than one task at a
time and cannot be modified by itself
or by any other module during execu-
tion; i.e., a task may begin executing
a reenterable module before a previous
task has finished executing it.

e Serially Reusable. A serially reusable
module will be executed by only one
task at a time, and it will either
initialize itself and/or it will
restore any instructions or any data in
the module that it alters during its
execution.

e Overlay format. A load mcdule struc-
tured for overlay includes a segment
table (SEGTAB) to enable the overlay
supervisor to load the proper segments,
and at least one ENTAB to assist in
passing control from one segment to
another. If a load module has the
overlay format attribute, the reenter-

able, reusable, refreshable, hierarchy,
and scatter attributes cannot be pre-
sent.

» Hierarchy format. When a HIARCHY
statement is detected, the "number" and
"name" operand values are used in
building the scatter table and transla-
tion table. The high-order byte of
each CSECT address entry contains the
hierarchy number that is included in
the GETMAIN request for main storage
for program loading.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Test. If this module is an assembler
language program and testing by the
test translator is desired, this attri-
bute can be specified. Test will cause
SYM records to be written. If the TEST
attribute is specified, the module can-
not be reenterable or serially
reusable.

Only loadable. This attribute indi-
cates that the control program may load
this module only via the LOAD macro

instruction.

Scatter format. A load module in
scatter format is suitable for block or
scatter loading. The scatter-
translation table and the relocation
dictionary maintain 1logical linkage
between scattered control sections

when program fetch loads them into main
storage.

*Block format. If neither the overlay
nor scatter attributes are specified,
it 1is implied that the module can only
be block loaded. The control program
will 1load the module only if enough
contiguous main storage space is avail-
able for the entire module.

This attribute indicates
that 1linkage editor did not find any
errors that would prevent successful
execution. If this attribute is not
present the control program will not
load the module.

*Executable.

contains one text record and no
relocation dictionary records. This
attribute indicates that the control
program does not have to allocate main
storage for relocation dictionary items
when loading the module. It also indi-
cates that the first text record is the
last one; there is no control record
following it. The entire module can be
read by program fetch in a single read
operation.

Module

*Linkage editor assigned origin of
first text record is =zero. If this
attribute is present, the first byte of
instruction or data in the first text
record is assigned to location zero.

*Entry point assigned by linkage editor

is__zero. Indicates that the entry
point 1is at the first byte of the
module.

*No relocation dictionary items pres-

ent. Indicates to the control program
that no allocation of main storage is

necessary +to receive relocation dic-
tionary items when program fetch loads
them into main storage.

e Not editable. Indicates that the load
module cannot be accepted by the 1link-
age editor for subsequent processing.
(For example, the programmer may drop
the CESD from an output load module in
order to conserve space on the library;
such a load module cannot be repro-
cessed by linkage editor.)

e Symbol statements present. If a module
produced by the assembler 1language
translator is to be tested by the test
translator, it may contain a testing
symbol dictionary. 1In a load module,
this dictionary contains the informa-
tion from the symbol statement images
that were input to linkage editor.

e Refreshable. A refreshable module can-
not be modified by itself or by any
other module during execution; i.e., a
refreshable module can be replaced by a
new copy during execution by a recovery

management routine without changing
either the sequence or the results of
processing. (For details on recovery

management, refer to the publication:
IEM System/360 Operating System: Con-
cepts and Facilities, Form C28-6535.)

MAIN STORAGE HIFRARCHY SUPPORT

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the linkage editor produces 1load
modules which can be 1loaded into either
processor storage or IBM 2361 Core Storage
by the control program. If the HIAR param-
eter is specified in the PARM field of the
EXEC statement, the linkage editor is ini-
tialized to accept the HIARCHY control
statement. This statement specifies the
storage hierarchy (0 for processor storage
and 1 for IBM 2361 Core Storage) into which
the CSECTs identified in the statement are
to be loaded.

MAJOR DIVISIONS OF LINKAGE EDITOR

Linkage editor processing consists of

five sequential operations:

1. Initial processing.

2. Input processing.

3. Intermediate processing.
4. Second pass processing.
5. Final processing.

Section 1: Introduction 13

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

INITIAL PROCESSING

Initial processing begins when the con-
trol program passes control to the linkage
editor. During this operation, the linkage
editor prepares for all subsequent opera-
tions. The initial processor:

e Uses data management facilities to open
data sets to be used during linkage
editor processing.

s Interprets the options and attributes
specified by the programmer and saves
them in an all purpose table (APT).

e Uses task management facilities to
obtain main storage space for internal
tables, work areas, and input/output
buffer areas used in linkage editor
processing.

After initial processing, control is
passed to the input processor.

INPUT PROCESSING (FIRST PASS)

All input to the 1linkage editor is
processed during the first pass. Input
records are read, checked for validity,
identified, and processed as required. The
text and RLD items that are to be part of
the output load module are written on the
intermediate data set (SYSUT1). Linkage
editor control statements are interpreted
and processed and the CESD is built in main
storage. SYM records in the input are
gathered and written out directly on the
output device as part of the output load
module. After all input has been received
and processed, control is passed to inter-
mediate processing.

INTERMEDIATE PROCESSING

Intermediate processing consists basi-

cally of +two operations: address assign-
ment and intermediate output processing.
Relative machine addresses are assigned to

all external symbols that are to be con-
tained in the output load module, to the
module entry point, and also to any alter-
native entry points dJdefined by the user
with ALIAS statements. The intermediate
output processor places the CESD and, if
required, the SEGTAB or scatter translation
table in the output module library.

SECOND PASS PROCESSING
During second pass processing, the text
and RID items are read from the intermedi-

ate data set, address constants in the text
are relocated, and the records that make up

14

the output module are written on the output
module library (SYSLMOD).

FINAL PROCESSING

Final processing completes the 1library
directory entry for the output load module
and places it on the output module library.
If the module is structured for overlay,
the final processor writes out on SYSIMOD a
note 1list that indicates the location of
each segment in the output module library.
If any coded diagnostic messages were writ-
ten out on SYSPRINT during linkage editor
processing, a directory explaining these
coded messages is written. If specified, a
module map or cross-reference table is
produced. If a multiple execution of the
linkage editor is specified, control
returns to initial processing; otherwise,
control is returned to the caller.

INPUT/OUTPUT FLOW

Four data sets
linkage editor processing;
and functions are:

must be specified for
their ddnames

e SYSLIN. This is the
data set,"™ containing object modules
and control statements. All input from
SYSLIN must be in 80-column card image
format. The SYSLIN source may be a
card reader, magnetic tape, a direct-
access device, or a concatenation of
data sets from different types of input
devices.1

"primary input

e SYSPRINT. This is the "diagnostic out-
put data set." Diagnostic messages,
the module map, and the cross-reference
table are written on SYSPRINT. (In the
Sequential Scheduling System, the SYs-
PRINT device is normally a printer or
magnetic tape.)

e SYSUT1. This is the "intermediate data
set." Linkage editor wuses this data
set for temporary storage of text and
RLD items being processed. SYSUT1 must
be on a direct-access volume.

e SYSLMOD. This is the "output module
data set."™ It is a partitioned data
set on a direct-access volume. SYSLMOD
contains load modules; their attributes
are described in the user's portion of
the directory entry for the member.

An additional data set, SYSLIB, is used
by linkage editor if there are any automat-
ic 1library calls to be processed. SYSLIB

1A concatenation of data sets cannot con-
tain both object and load modules.

Form Y28-6610~2, Page Revised by TNL Y28~2356,

can be defined only as a partitioned data
set. The members of SYSLIB can be either
load modules or object modules (but object
and load modules cannot be contained in the
same PDS). When SYSLIB is opened, the
linkage editor determines whether the PDS
contains object or load modules by checking
the format in the data control block (DCB).
If the PDS contains object modules, the
record format (RECFM) field of the DCB
indicates "fixed (F) format"; if it con—-
tains 1load modules, the DCB indicates
"unknown (U) format". (Load module records
are of variable 1length.) If SYSLIB con-
tains object modules, the 1linkage editor
ignores the wuser's portions of the PDS
directory entries for the object modules.

Other data sets may be read by linkage
editor when it processes INCLUDE or LIBRARY
statements specifying ddnames. Data sets
read into main storage with INCLUDE state-

ments may be either sequential or parti-
tioned. SYSLIB and data sets specified in
LIBRARY statements for use by automatic

library call must be partitioned.

The attributes for the "execute linkage
editor" job step are the attributes speci-

11/15/68

fied on the EXEC statement. These attri-
butes may be modified if a load module
having different attributes is processed.

Figure 5 shows the input/output flow.
During the initial processing, SYSLIN,
SYSPRINT, SYSUT1, and SYSLMOD are opened.
During input processing, the primary input
is read from SYSLIN. If an INCLUDE state-
ment is read in the primary input, the data
set whose ddname is specified on the state-
ment is opened, and is processed.

At the end of all SYSLIN input, SYSLIB
and any other data sets whose ddnames are
specified on LIBRARY statements are pro-
cessed through automatic library calls.

If the TEST option has bLeen selected,
SYM records are written during input pro-
cessing; text and RLD items are written
sequentially on SYSUT1. The location of
each text record on SYSUT1 is entered in a
text note 1list. The location of each RLD
record on SYSUT1 is entered in an RID note
list. If either note list overflows, it is
written out on SYSUT1.

Section 1: Introduction 14.1

SYSPRINT

SYSLIN
Primary Initial giatgnorstic
- urpu
an:l: R Processing ’ Dmf Set
T
Additional 1
Input :
Sources i
|
H S
Input
r__ Processing
|
|
|
SYSLIB ‘
- .
R L
Call |nterme.d-ute
Library Processing
_)
[
|
|
SYSUTI | SYSLMOD
) !
Inter- Second Pass Output
mediate > Processing L Module
Data Set Library
_/ :
|
|
1
Final —
Processing
 —

Figure 5. Input/Output Flow

In intermediate processing, the CESD is
written on SYSLMOD (unless the not editable
attribute is indicated). If a scatter
table, translation table, or SEGTAB is
required, it 1is also written on SYSLMOD.
The note lists for the text and RLD items
on SYSUT1 are read into main storage.

During second pass processing, text and
RLD records are read into main storage from
SYSUT1 in the order of assigned addresses
within each segment (using the note lists
to find the records) and are written out on
SYSLMOD.

In final processing, the member name and
any alias names are entered into the PDS
directory entry of the output load module,
via the STOW macro instruction. If any
coded diagnostic messages were written on
SYSPRINT during linkage editor processing,
a diagnostic message directory containing
error message text is written out on SYS-
PRINT. If a module map or cross-reference
table was requested, SYSLMOD is closed, and
then reopened as an input source. The CESD

is read into main storage from SYSLMOD to
be used in producing the module map. If a
cross-reference table was requested, the
RLD iters are also read from SYSLMOD; at
the end c¢f final processing, SYSLMOD is
closed. All other data sets are then
closed and control is returned to the
calling program, unless the SYSLIN input
during input processing was terminated by a
NAME statement. If a NAME statement termi-
nated the primary input, control is
returned to initial processing and SYSLMOD
is opened for output. When a NAME state-
ment 1is used to produce multiple 1load
modules in a single execution of linkage
editor, SYSLIN, SYSPRINT, and SYSUT1 remain
open for the entire execution. (A pointer
in the DCB for SYSUT1 is repositioned to
the beginning of extent of SYSUT1 after
each load module is produced.) If neither
a module map nor a cross-reference table is
requested, SYSLMOD remains open for output.

INTERNAL DATA FLOW

A generalized representation of internal
data flow during linkage editor processing
is given in Figure 6. A pointer in the
SYSLIN or SYSLIB read block indicates the
input source from which data is to be read.
The input data 1is then read in and proc-
essed in the following manner:

Input records from SYSLIN are read into
the SYSLIN buffer. (SYSLIN contains only
object mcdules.) Object modules from SYS-

LIB are read into the SYSLIN kuffer, where-
as locad modules from SYSLIB are read into
the load wodule buffer. During input proc-
essing, SYM information is gathered in the
load module kuffer, text is gathered in the
input text buffer, RLD records are proc-

essed in the input RILD buffer, and ESD

records are combined into the composite
ESD. Text and RILDs are written out on
SYSUT1, while SYM records are written

directly on SYSLMOD. CESD, SEGTAB, and
scatter/translation records are written out
on SYSLMOD during intermediate processing.
During second pass processing, any RLD
itews that were placed on SYSUT1 are read
back into the second pass RLD kuffer; any
text that was stored on SYSUT1 is read back
into the second pass text buffer. (Two
second pass text buffers are used for
input/output overlap.) For overlay
modules, ENTAB RLD items are produced in
the ENTAB RID buffer. (The ENTAB itself is
built in the second pass text buffer.)
After address constants in the text have
been relocated, text, RLD, and ENTAB
records are written out on SYSLMOD.

Section 1: Introduction 15

SYSLIN

SYSLIN Read
Block

SYSLIB Read
Block

DCB Address

DCB Address

RLD
Buffer
o RMDbs ,J
-
»| Second Pass RLD | RLDs
Input Buffer
ENTAB RLD
Buffer
Second Pass RLD |
Output Buffer RLDs
CCW,/RLD
Second Pass Second Pass
Text Buffer 1 Text Buffer 2

SYSLIN
Buffer
ESD| SYM|TXT
} ™
Input Text
Buffer
™T
- _RLDs
SYSUT 1
TXT |RLD
eFigure 6. Internal

16

Data Flow

RLDs

SYSLIB

Load Module
Buffer

™XT

TXT| |ESD

CESD

T Y

SYSLMOD

SCATTER/
TRANSLATION

Form Y28-6610-2
Page revised 7/23/69 by TNL ¥Y28-6400

The following text and the associated
flowcharts at the end of this section
describe the major divisions of the 15K and
18K versions of 1linkage editor E. Each
major division is further subdivided and
described to explain the general organiza-
tion and operation of linkage editor.

The major divisions of linkage editor E
are shown in chart aa.

Initial processor.

Input processor.

Address assignment processor.
Intermediate output processor.
Second pass processor.

Final processor.

The overall organization of linkage editor
E is shown in Figure 7.

INITIAL PROCESSOR

The initial processor builds an all
purpose table (APT), which contains
descriptions of other tables wused by the
linkage editor, and contains decision indi-
cators that control linkage editor opera-
tion. The APT remains in main storage
throughout the linkage editing process and
is the major communication area among
internal functions.

When the linkage editor receives control
from the job scheduler, or from another
program via a CALL (after execution of
LOAD, LINK, XCTL, or ATTACH macro instruc-
tion), control information may be passed to
it.* This information includes the attri-
butes and options that control 1linkage
editor processing. When control is passed
to the linkage editor from the job schedul-

iThe method of passing information to the
linkage editor is described in the System
Reference Library publication IBM__System/
360 Operating System: Linkage Editor and
Loader.

Section 2:

SECTION 2: DISCUSSION OF MAJOR DIVISIONS

er, the passed control information is the
information contained in the operand field
of the EXEC statement. The initial proces-
sor interprets the control information,
checks it for validity, and saves it for
later use in linkage editor processing.

A program that passes control to the
linkage editor may provide a substitute
list of ddnames to be used by the linkage
editor in place of the standard names, and
a name that is to be assigned to the output
load module in the PDS directory.

The 15K and 18K level E initial proces-
sor (IEWLEINT) (Chart BA) operates in the
following manner:

¢ After the standard ddnames (or passed
ddnames) have been entered into the
data control blocks of the data sets
used by the linkage editor, the initial
processor opens all data sets except

SYSLIB and SYSLMOD using data manage-
ment facilities. (The SYSLIB DCB is
used for automatic 1library calls or

INCLUDE statements. It is opened dur-
ing input processing only if there are
any automatic calls or INCLUDE state-
ments specifying it.)

e The initial processor sets an "unlike
attributes®” indicator in the SYSLIN
DCB. This indicates to the open rou-

tine that SYSLIN may be a concatenation

of data sets stored on different
devices.
e The attribute and option routine scans

and analyzes the control information
that was previously passed in a list to
linkage editor. The processing options
requested by the wuser and the attri-
butes to be assigned to the output load
module are compared against an option
table and noted in the all purpose
table. When mutually exclusive attri-
butes are specified for a load module,
the linkage editor ignores the incom-
patible attribute (refer to Table 1).

Discussion of Major Divisions 17

Table 1. Combinations
butes and Program Options

of Module Attri-

-0l
\
5
S BN
<
. g
X W /
— &
XY
X ©
£
<
X x| ® /
: ~<\\‘>‘L
X ! <R
X i e
X [x <
- ; N\
f \’\‘:\/ e
s
.\\\CP\'
% ‘ O\’

&;//

dﬁ

18

Note: An X indicates incompatible attri-
butes: the attribute that appears lower on
the list is ignored. For example, to check
the compatibility of XREF and NE, follow
the XREF column down and the NE row across
until they intersect. Since an X appears
where they intersect, they are incompatible
attributes. NE is ignored.

TEWLEINT
RREERAL KENH N RARNN
* *

* INITIAL *

* PROCESSOR o
* *
*

*
EE e I 2 e

IEWLEGPT

HHIRIAD NN RN
* ATTRIBUTES *
* AND *
* OPTIONS *
* PROCESSDR *
* *

*

R R I T T

ALOC
HRREKDBDO MR AR ERRE
* *
* ALLOCATION *

——% ROUTINE *
* *
* *
HREEEXEREEREREE NN

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

INITIAL PROCESSING

IEWLEINP
R] NN AR NH
- *

* INPUT *
* PROCESSOR e
* *
*
*

*
I

IEWLEMDI
KRR K C2HHHEHR IR NN
* *

* OBJECT *
————% MODULE *
* PROCESSDR *
* *

*

T

INP270
R M RN D MW RN
* *

* LOAD *
* MODULE *
* PROCESSOR *
* *

*

O s

IEWLCINC
FE T NIPE R 2 TR NS Y
* *

* INCLUDE *

* PROCESSOR *—
* *
*
*

*
AR EH RN

ITEWLCAUT
HHRBRRH2 HHRTRRH KRR
* *

* AUTOMATIC *
% LIBRARY CALL %*—
* PROCESSOR *
* *

LR T

* ESD
e — PROCESSOR e
* *

IEWLCESD
HERERCIHEXR R RR AN
* *

*H K
* TEWLCDCN * RENUMBER *
* s R e S T
* LABEL * ENTER *
R T L e
* FREELINE * IEWLCPTH *
R T]
* NXTLINE * IDCESD *
R S E s S e s e
* JTEWLCRCG * TEWLCDLK *
R e e L e
* DLDEF * *
LR e e LR e T

* *
LR R e S 2 T R L T

TEWLCSYM
HEREEDIHRHR SRR RR
* *

* SYM *
———% PROCESSOR *
* *
*
*

*
EE I R E T

1EWLERAT
HHRKRKETH AR ERENN WM NI 4NN RN

* * * BUFTXT *

* TEXT * [S S

——— AND RLD *— * BUFRLD *
* PROCESSOR * W — e N KK W —

* * * TXTIOT *

ERZ TR TE T ST T Y L e 2 T

TEWLCEND
KR TR AN
* *

* END *
b PROCESSOR *
* *
*
*

*
e T T TR

HRRERGIH XS XRRRR
* *
= LisopP *

| * *
l FRII IR

|

IEWLCSCN
FEE S LNPE TR SR RS R N L)
* * * *
* CONTROL * * READS8 *
* STATEMENT * e e e W R W
* SCANNER * * PROCENTY * INPUT PROCESSING
* * * *
B e T R L T T T

Figure 7. Level E Linkage Editor Organization

Section 2: Discussion of Major Divisions

18.1

M IEWLEADA
A2 VIR ST ST T
* *

ADDRESS *

ASSIGNMENT W

*
*
* PROCCSSCR *
* *
*

R 2]

YEWLEOQUT
KR RE L KRR AN R
*

*

* INTERMEDIATE *

* ouTPUT *

* PROCESSOR *
*
*

*
R s T

HARKRKAZREARAE RN
* *

* IEWLCENS *

Dk et D U

* IEWLCENT *
*

*
L T T s

INTERMEDIATE PRDOCESSING

TEWLESCD
EHEXRE] HEREHRER RN
* *

* SECOND *
* PASS -
* PROCESSOR #
* *
*

S e s 2]

SCDGETID
HHEEREC2HERREKHEXE

* CONTROL *

* SECTION *
¥ SEARCH *
* (GET ID) *

* *

AR RS RS LSS S LS 223

SCORDTXT/SCDRDRLD
HREKHDD FH AR AR
*

*
*
* SYSUT1 *
* *
*

R T T

SCDEXEC
LA S IR S RS2 20
* *
* SECOND *
——x PASS *
* EXECUTOR *
* *
LRSS S SR RS E TS S S 2

SCDRLLOC
G LA RS T T
* *
* RELOCATION *
———— ROUT INE %*
* *
* *
B L T)

SCDOUTPT
EREEXG2AERARREK R
* *

* QUTPUT
% PROCESSOR
*

*
*
*
*
*

*
P a2 2T T T T

SCDENTAB
HEKKKHDREREH AR K
* *

*

ENTAB *
—* CREATION *
* *
*
*

*
O T

SECOND PASS PROCESSING

Figure 7. Level E Linkage Editor Organizaticn

Section 2:

(Continued)

Discussion of Major Divisions

19

TEWLCFNL

HH N C] MR RN RN
* *
* FINAL *

PROCESSOR %-
* *
*
#*

*
EE S S S ST L L LSS

FNL
I s 2 V-2 T 2T R)
*

*
TE *
TTR LIST *
* (IN OVERILAY) *
* *

*

I WK F RN

FNL300
LR R E RNV E L RS S 2L 20
*

* SET UP PDS *

————— * DIRECTORY
* ENTRY *
* *

EE RIS ST 2

FNLCN
) D KRN H
*

*
* PRINT *
————— * DOWN—GRADED *

* ATTRIBUTES *
* *
LRSI R RS S S S 223

1EWLCBPT
EEEE - R S L S S

* PRINT *

* DIAGNOSTIC *
e MESSAGE *
*

*

*

* DIRECTQORY
*

EERRRARERREEERRNR

IEWLCMAP
R EFT DN RN R N RN
* *
* MAP /XREF *
X PROCESSOR *
* *
* *
L Y

TEWCEOQOI
EXERNGRH A AR XXRK
* FINAL *
* CLEANUP *
TERMINATE *
AND RETURN *
* *
*

L %

HEEFEEREHERRRERR

FNL301A

HEXXEACIHERX XA H N
*
* STOwW *

—_% MEMBER *
* *
* *
KK NN N K

FNL90O

HEXXRCTH RN A XR R
SET UP *

AND *

STOW *

* ALIASES *

* *
RN NI N R KR

FINAL

PROCESSING

Figure 7.

20

Level E Linkage Editor Organizaticn

(Continued)

Form Y28-6610-2, Page Revised by TNL Y28-2301,

e SYSLMOD is opened, and the allocation
processor requests main storage space
for internal tables, buffers, and work
areas. The allocation processor issues
a request for a minimum requirement of
main storage space. The minimum value
depends on whether or not the module
being processed is structured for over-
lay; it includes an amount to be used
by data management functions. If suf-
ficient main storage space is avail-
able, the supervisor returns control to
the allocation processor and the space
exceeding the minimum requirement is
divided among the tables and buffers.
If sufficient main storage space is not
available, the control program will not
return control to linkage editor.

The following paragraphs describe the
allocation process in the level E version
of the linkage editor.

MAIN STORAGE ALLOCATION - 15K AND 18K

LEVEL E

To obtain the required main storage
space, the allocation processor (ALOC) :

1. Determines the excess of main storage
space allocated by the supervisor.

2. Divides the total excess by the total
weight factor. A weight factor is a
ratio based on the individual main
storage requirements of linkage editor
tables that are not fixed in size.
(Fixed tables have weight factors of
Z€ero.) The total weight factor
depends on whether or not the module
is structured for overlay.

3. Multiplies the quotient obtained in
step 2 (rounded to the nearest lower
integer) by the weight factor for each

table and adds the result to the
minimum requirement for the table.
This is done for all tables and buf-

fers used by the current module.

4. Divides the total byte count for each
table by the number of bytes per
entry, and saves the result in the all
purpose table.

5. Computes the addresses for the tables.
6. Releases excess main storage space,

noting the last address used.

When the required main storage space has
been allocated, tables are initialized, and
control is passed to the input processor.

1/31/68

INPUT PROCESSOR

Section 2:

After initial processing, control is
passed to the input processor. The input
processor performs a control function; the
operations performed depend on the nature
of the input. The input type and input
conditions are analyzed, and control is
passed to the appropriate processing rou-
tine. At the end of input, control passes
to the intermediate processor.

The 15K and 18K level E input processor
(TEWLEINP) is shown in Chart CA; it
operates in the following manner:

e Each input record is read, using one of
two read blocks. The first read block
contains the address of the SYSIIN
module buffer, the address of the SYS-
LIN DCB, and the block size and logical
record Ilength. The second read block
contains the address of the buffer for
library records (object module buffer
or load module buffer), the address of
the library DCB, and the block size and
logical record length. A pointer is
used to indicate which read block is to
be used for the input record. Initial-
1y, the pointer is set to the SYSIIN
read block. If input 1is to be read
from a library, the include processor
(Chart CO) or automatic library call
processor (Chart CP) may move the
pointer to the 1library read block at
any end-of-data condition. The reading
of input is therefore not restricted to
a particular DCB and buffer.

e If SYSLIN is a concatenation of data
sets, the current READ is reissued when
a data set boundary is crossed.

e Control is given to the control state-

ment scanner (Charts CL and CM) for all
object module records whose first
column character 1is a blank, provided

that the record is not encountered "in

nmodule." (Control statements encoun-
tered within a module cause an error
indication.)

given to either the object
(Chart CB) or load
module processor (Chart CC), depending
on the input module type. (All input
via include or automatic library call
is identified by record format. F
format indicates object modules; U for-
mat indicates load modules. Only
object modules are read from SYSLIN.)

e Control is
module processor

Discussion of Major Divisions 21

Form Y28-6610-2,

e At any end-of-input (from SYSLIN or

SYSLIB) , the input processor determines
if control should be given to the
include processor or to the automatic
library call processor. The include
processor 1is given control if more
modules must be included before resum-
ing normal processing. The automatic
library call processor receives control
if the NCAL option (no automatic
library calls) was not selected and an
end-of-input on SYSLIN has occurred.
If the NCAL option was selected, con-
trol 1is passed to the address assign-
ment processor.

If a NAME statement, which may indicate
a multiple execution of linkage editor,
was detected by the control statement
scanner, processing proceeds as if an
end-of-input had occurred on SYSLIN
(the automatic 1library call processor
receives control). However, no end-of-
input indication is made so that con-
trol will be returned to the initial
processor at the end of final
processing.

If an end-o¥-input occurs on SYSLIN,
but no valid input was received, con-
trol is passed to the final processor
(Chart GA) to terminate linkage editor
processing.

Page Revised by TNL ¥Y28-2301, 1/31/68

OBJECT MODULE PROCESSOR

The 1level E object module processor is
shown in Chart CB. Object module proces-
sing consists essentially of three
operations:

1. Determination of record type.
2. Setup of general registers.
3. Special event processing.
The record type is determined by examin-
ing columns 2 through 4 of each logical
input record. For each record type, con-

trol is passed to an associated processor,
as follows:

Record

Type Processor Chart
SYM IEWLCSYM CD

ESD IEWLCESD CE,CF,CG
TXT IEWLERAT CH,CJd
RLD IEWLERAT CH,CI
END IEWLCEND CK

The general registers are loaded with
input record information to be used by the
selected processor, as described in
Table 2.

®#Table 2. General Register Information - Object Module Processing

r T -
| Input Record Type | General Register |
| (See Appendix A for} T T T 4
| Record Formats) | 3 | 4 | 5] 6 |
1 1 —_ } 4 4
r L] T T T 1
| SYM | | SYM Statement | | Address of SYM |
| | |byte count | | statement in |
| | | | | butfer !
1 1 } 1] _{
T 1 T T T

ESD		Number of bytes	ESDID of first	Address of firstj
		of ESD informa-	ESD item on	byte of ESD in
		tion	statement	buffer
i] { [L 4				
) T T T T h)				
TXT	Assigned address	Number of bytes	ESDID of CSECT	Address of first
	of first byte of jof text informa-	to which text	byte of text in	
	text	tion	belongs	buffer
L 1 __+__] 1 4				
r T T T 1				
RLD		Number of bytes		Address of first
{ Jof RLD informa-		byte of RLD in		
]	Jtion		buffer	
; 1 t 1 + {				
END	Absolute address	Length of CSECT	ESDID of CSECT	
Jof entry point	for which no containing entry			
]on END statement	length was given	point	
		in ESD item		
L 1 L 1 AL d

22

Following 1is a description of special
event processing:

¢ When an END statement is detected, the
RLD and TXT processor is entered so
that any data still contained in the
input RLD buffer or the input text
buffer can be written out on SYSUTI1.

e If the TEST option is selected, the SYM
records from the object wodule are
gathered by the SYM processor in the
load module buffer. When the first TXT
statement in a module is encountered
(or if no text statement has been
encountered when the END statement is
detected), the SYM processor is entered
s0 that the contents of the load module
buffer can be written out on SYSLMOD
(see Chart CD).

® When control is returned from the ESD
processor, indicators in the all pur-
pose table are examined to determine
if:

1. A control section (SD, PC, or
common) was indicated on the ESD
statement.

2. The TEST option was specified.

If both conditions are met, the SYM
processor is entered to block the ESD
record with any other ESD records in
the input text buffer.

o If a control statement continuation is
expected and an okject module record is
read, an error condition occurs, and a
coded diagnostic message is produced by
the error 1logging routine. Normal
object module processing is then per-
formed on the record.

e If, during object module processing, a
statement is encountered which is not
one of the five acceptable types (SYM,
ESD, TXT, RLD, or END), an error condi-
tion occurs and a diagnostic message is
produced by the error logging routine.
The input record is then ignored.

LOAD MODULE PROCESSOR

The 1level E 1load module processor is
shown in Chart CC. Load modules included
in the input to 1linkage editor by the
include processor or the automatic 1library
call processor are processed in the follow-
ing manner:

e The input record type is determined by
an identification field (byte 1 of the

record), and control is passed to an
associated processor, as shown in
Table 3.

¢ The parameter registers are lcaded with
input record information to ke used by
the selected processor, as described in
Table 4.

o If the record is not identified as a
TXT, CESD, Scatter/Translation, SYM, or
CCW/RLD record, an error condition
occurs, and a diagnostic message 1is
printed out. The input record is
otherwise ignored.

e If the TEST option was not specified on
the EXEC statement, all SYM records are
ignored.

o If an end-of-module indication is found
in a CCW or RLD record, the END proc-
essor performs cleanup functions and
control returns to the input processor.

e When a CCW record is detected, the
following TXT record is imrediately
read into the input text buffer before
the TXT and RLD processor is entered.

e If the test option was specified on the
EXEC statement and a SYM record is
received, control is passed to the SYM
processor to write out the record as
test translation data from the load
module kbuffer (see Chart CD).

eTable 3. Record Types and Associated

Processors

ToTTT T S B 1
|Record Type|Identifier|Processor|Chart |
R f-mmm——— -4 L ——
| TXT | * | IEWLERAT |CH,CJ [
CESD {hex '20'	IEWCESD	CE,CF,CG	
Scatter/ i			
Translation	hex '10'	(Ignored)	
SYM lhex '40'	IEWLCSYM	CD	
ccw	hex '01'	IEWLERAT	CH,CI
CCW/RLD	hex '03'	IEWLERAT	CH,CI
RLD	hex '02'	IEWLERAT	CH,CI
_ —_—d 4 —_d ___'
If end of module indication is on:

I

- T I T - 'l
|CcCwW |hex 'OD' |IEWLCEND |CK [
| CCW/RLD |hex 'OF' |IEWLCEND |CK [
|RLD lhex 'OE' |IEWLCEND |CK |
____________ Lo _ 1 —_1 -
| *Identified by preceding control record. |
L_ e 1

The following paragraphs describe the
functions, during okject and 1load module
processing, of the ESD processor, the TXT
and RLD processor, and the END processor.

Section 2: Discussion of Major Divisions 23

Table 4. General Register Information - Load Module Processing

Ittt s - -1
| | General Register |
|Load module f-—————————————————- T——————————— o e - T ——— 1
|Record Type | 3 | 4 | 5 | 6 |
pmmm— - } S o s 1
i SYM | |zero | | |
pmm e frmmm e T — frmm oo oo 1
| CESD | |Byte count of ESD | ESDID of first | Address of first|
| | |items in record | CESD item in | CESD item in

| | | | record | buffer |
pmmmm - T e Sy oo eem 1 - 1
| CCW | Assigned address |Level E-Byte ccunt| ESDID of CSECT | |
| | of first byte of |text in following | to which text |

| | text in following|record | belongs |

| | record |] | |
e oo T ——— oo frmmmm o m e
| RLD | |Byte count of RLD | | Address of first|
| | |itemws in record | | RLD item in

| | | | | buffer |
L e o e R, L ——— -1

ESD PROCESSOR

When the object or load module processor
detects an ESD record, it gives control to
the ESD prccessor (Charts CE, CF, and CG).

The main function of the ESD processor
is symbol resolution. It combines the
individual ESDs in the input to linkage
editor into a composite ESD, which contains
all symbols in the input which were not
changed, deleted, or replaced. The ESD
processor vrefers to a chained REPLACE/
CHANGE list (produced by the control card
scanner) to determine which ESD items are
to be changed, deleted, or replaced. The
ESD processor also produces a renumrbering
table (RNT), which is used by the TXT, RILD,
and END processors to translate the ESD 1ID
of the input ESD items to CESD IDs.

ESD Record Types

Every object module in the input to
iinkage editor must contain at least one
ESD item. An ESD item 1is created by a
language translator whenever it finds a
symbol that 1is defined for external use.
In the assembler language, for example, ESD
items are created whenever an ENTRY, EXTRN,
COM, START, or CSECT statement, or a V-type
address constant is found. An ESD item 1is
created to define the beginning of each
control section, and to define a common
area. Each ESD item has a type assigned to
it +that indicates its function. The ESD
types are:

e Section Definition (SD). Defines the
beginning of a named control section.

e Private Code (PC). Defines the begin-
ning of an unnamed control section.

24

e Label Definition (D). Defines a lakel
(symbol) whose location 1is defined
relative to the location of the control
secticn in which it is contained. An
LD-type ESD item contains the ESD ID of
the control section that contains the
label.

e Common (CM). Defines a common area for
which a main storage address is
assigned during linkage editor process-
ing. The area may be named or unnamed;
an unnamed area is referred to as a
"ftlank common" area.

e Pseudo Register (PR). Defines an area
external to the output module, but
referred to by it, for which wmwain
storage space is allocated at execution
time. The linkage editor treats PR
symbols as a block that is external to
the program. The value assigned to
each symbol is a displacement within
this klock.

e External Reference (ER). Refers to a

symbol that 1is referred +to but not
defined within an input module.
CESD Record Types and Subtypes
A load mcdule in the input to 1linkage

editor contains at least one CESD record
(240 Dbytes, maximum). The CESD recorxrd
types are the same as for ESD records, with
the following additions:

¢ Null type. This dindicates that the
item is to be ignored in any reprocess-
ing of the module by linkage editor.

(LR) .
within

This defines a
a control sec-

s Label Reference
label (symbol)

tion. An LR type CESD
bered; it contains the ESD ID of the
control section entry in the 1ID/length
field. An LR may be referenced direct-
ly by an RLD item in the same module,
whereas an LD may not. All ID items
are changed to LR items during linkage
editor processing (LDs are contained
only in object modules, never in load
modules).

entry is num-

e Private Code (PC) Marked Delete. This
is a CESD item created only for ENTABs
and SEGTABs. PC-delete entries are
placed in the renumbering takle, indi-
cating that associated TXT and RLD
information is to be deleted.

CESD items may also contain a "subtype."
The subtypes are 1listed in the internal
CESD format in Section 3.

ESD Processing

Upon receiving control from
processor, the ESD processor saves the
ESD ID of the ESD record, the number of
bytes of ESD information, and the type
field of the first ESD item. The current
segment number is placed in the ESD, unless
it is a PR type (PRs have an alignment
value in the segment number field). If the
automatic library call indicator is on, the
segment number is set to 1 so that called
modules will be placed in the root segment.
The ESD item is then processed according to
its type, in the following manner:

the input

e If the ESD item is an ER, bytes 10, 11,
and 12 are set to zero in the input
buffer (either the object wmodule buf-
fer, the SYSLIN buffer, or the load
module buffer). Byte 10 must be
cleared because the automatic library
call processor wuses it to indicate if
automatic library calls have been proc-

essea. Bytes 11 and 12 must be cleared
because any nonzero data (including
blanks) will ke entered in the delink

table if delinking is required for the
symbol. If the input item is an ER
item from an object module, the CESD
subtype field is also reset to zero to
indicate that there are no modifiers in
the subtype field.

e If a REPLACE/CHANGE function has been
requested for the input module, the
routine IEWLCRCG examines the

REPLACE/CHANGE chain that was built in
the CESD by the control statement scan-
ner and makes the appropriate modifica-
tions. For example, if the scanner
received the statement CHANGE A (B),
the CESD contains a line for A, marked
as a change statement item in the
subtype field; the next line contains
the symbol B. The ESD processor

Secticn 2:

changes the input ESD item symbol from
A to B.
¢« If the ESD item is a PC, the CESD is

not searched because each PC entry is
treated as a unique entry. The PC is
placed in the next available CESD 1line
and 1is processed in the same manner as
an SD.

¢ If the ESD item is NULL, the renumber-
ing routine is entered. (This routine
is described in "Non-Resolution
Processing”.)

e If the ESD item is an LD, the ESD
processor changes it to an LR. The
item 1is then processed as an LK.
(There are some minor differences in
processing LDs that have been changed

to 1IRs; refer to "LR (or LD) Items."
For this reason, the ESD processor sets
an internal indicator when it changes

the type to LR.)
After determining the FSD type, the ESD
processor scans the CESD for a matching
symbol. If no match is found, non-

resolution processing proceeds as shown on
Chart CF. 1If the input ESD syrkol matches
a symbol in the CESD, resolution processing
is performed as shown on Chart CG.
Resolution processing results in only one
CESD entry for each unique input FSD sym-
bol; multiple occurrences of the same input
ESD symbol are 1listed in the renumbering
table (RNT) with pointers to the single
CESD entry.

NON-RESOLUTION PROCESSING (CHART CF): If

no matching symbol is found in the CESD,

the input ESD item is processed as

described in the following paragraphs.

Sb__TItems: If the input ESD item is an SD:

* The freeline routine selects an empty
line in the CESD. The line following
the current line 1is chosen unless a
previous CESD 1line is marked null.
(Null lines are used whenever possikble
to save space.)

s The ESD processor determines if auto-
matic library calls are being proc-
essed. If automatic library calls are
being processed, an indicator is set in
the type field of the selected CESD
line. (If a module map was requested,
this indicator is checked during module
map processing. If the indicator is
set, the control section is marked with
an asterisk in the module map or cross
reference table to indicate that it was
obtained from a library during automat-
ic library call processing.)

Discussion of Major Divisions 25

indicator is set in the

table to note that SDs,
PCs, or CMs were encountered in the
input record. When control returns to
the input processor, the write indica-
tor 1is tested. If it is on and the
TEST option was specified, routine
IEWLCSYM will save ESD records contain-
ing SDs, PCs, or CMs, block them into
244-byte records (including four bytes
of control information), and write them
out on SYSLMOD.

e A "write"
all-purpose

e In any input object module the ESD
processor saves the CESD line number of
the first SD entry whose length is
zero. The END processor uses this CESD
line to enter the length specified on
the END card. (Typical FORTRAN input
has the control section length on the
END card.)

e The enter routine creates a CESD entry
for the input ESD item; it moves the
symbol, length, segment number, ID, and
type into the selected CESD line.

e The renumber routine places the line
number of the new CESD entry into the
renumbering table to provide a means of
translating the input IDs to the new
CESD IDs. For example, if the input

SD item has a line number (ESDID) of 3
but the item is placed into the CESD at
line 5, 5 is placed in the third line
of the renumbering table. (For each
input ESD line, except LD lines, there
is a corresponding RNT line. The RNT
contains information for the current
module; it is set to zero at the end of
each input module.)

ER Items: If the input ESD item is an ER,
it is entered in the CESD and renumbered as
described above; no special processing is
required.

LR (oxr LD) Items:
an LR or LD:

If the input ESD item is

e The LABEL routine determines, when
processing an LR if the SD for the
control section has been processed. If
the SD has not been received, any LRs
that refer to that SD are chained
together in the CESD until the SD is
received. (The sD might be marked
replace; therefore, the LR cannot be
processed until the SD 1is received.)
Wnen the SD is received all dependent
LRs are processed. Each LR ID field is
renumbered using the renumbering table
so that it refers to the CESD ID of the
SD.

e Since LDs are not referred to by RLDs,

they are not numbered in language
translator output; therefore, LDs are

26

not renumbered. The enter routine

places them directly in the CESD. If
an LD is received before the SD to
which it belongs, it is handled as an
LR.

PR Items: If the input ESD item is a

pseudc register, the current segment number
is not entered in column 12 of the ESD item
(Chart CE). Column 12 of a PR item may
contain an alignment value which indicates
that the PR must be aligned to a half-word,
full-word, or doukle-word boundary. The PR
is then processed by the freeline, enter,
and renumber routines, as described pre-
viously.

CM Items: If the input ESD item is CM, a
w"cormon" indicator is set and the item is
treated as a delete item. If the address
that was assigned to the CM item by the
language translator is not zexro, it is
saved in the delink table for later wuse.
(Two CM items with the same identifying
symbol may have different assigned address-
es; therefore, the assigned address in the
input must Dbe subtracted from all address
constants that refer to the CM items so
that they are returned to their displace-
ment value before relocation.) The CM item

is then renumbered and entered into the
CESD.

RESOLUTION PROCESSING (CHART CG): If a
matching symbol is found in the CESD, the
type fields of the input item and the

matching CESD item are compared and resolu-
tion processing 1is then performed. The
following ccnventions are observed during
resolution processing:

1. 1Input PR items may match only PR-type
entries in the CESD. If a PR-type

input item matches a necn-PR item in
the CESD, it is not treated as a
match; the CESD search for a matching

PR item continues.

2. If +the watching CESD item is marked
"chained," resolution is performed on
the item to which it is chained.

3. If the CESD line is marked null, the

match is ignored and the search con-
tinues.

4. If the CESD item is an ER produced
from a REPLACE, CHANGF, OVERLAY, or

ALIAS statement, or from the ddname
field of an INCLUDE or LIBRARY state-
ment, the match 1is ignored and the
search continues.

Matching items are
following manner:

processed in the

If the input ESD item is CM, SD, or LR,
and it matches an ER in the CESD, the
input type replaces the type indicated
in the CESD item. Non-resolution proc-
essing 1is then performed on the input
item.

If the input ESD item is an LR and it
matches a CM, SD, or LR in the CESD, a
"match" bit is set, indicating that a
double symbol definition is possible.
If the SD for the control section has
been entered in the CESD and is marked
for deletion, the label routine deletes
the label; if it 1s not marked for
deletion a "double symbol definition"
message is produced. If the SD for the
control section is not in the CESD, the
LR is chained to the matching LR; when
the SD 1is received, the LR is deleted
or a double symbol definition is pro-
duced, depending on whether or not the
SD is being deleted.

If an input PR matches a PR in the
CESD, the greater length and the most
"constrictive" boundary alignment are
placed in the CESD entry. (A double
word alignment 1is more constrictive
than full word alignment; full word is
more constrictive than half word; etc.)
The input PR entry is then renumbered
to the updated PR entry in the CESD.

If an input SD item matches an SD entry
in the CESD, automatic replacement of
the control section occurs. The input
SD item 1is entered into the CESD as a
delete-type and 1is chained to the
matching SD entry. (During second pass
processing, the assigned address of the
control section being replaced will be
subtracted ("delinked") from the
addresses of any non-branch type
address constants that refer +to the
ER-delete entry.) The SD-delete item
remains chained only while the module
is being processed; the END processor
will change the chained items to null-
type entries. (Refer to "Delinking
Non-Branch Type Address Constants.")

If an input SD item matches a CM entry
in the CESD, the greater length is
entered in the length field of the SD
entry. If the program is in overlay,
the common path routine scans SEGTAl to
find the segment in the overlay
structure that is common to both items
and places the segment number in the SD
entry. The SD item is then written
over the CM line and renumbered. (This
is referred to as "automatic promotion
of common.")

If an input SD or CM item matches an LR
in the CESD, a "double symbol
definition" message is produced and the

SD or CM item is entered in the CESD as
a delete-type item and is chained to
the matching LR entry, causing the SD
or CM to be replaced.

If the input item is CM, it may be
"plank common." Blank common may match
a PC-type CESD item because both con-
tain blanks in the symbol field. 1In
such a case, the match is ignored and
the search continues.

If an input CM item matches an SD or CM
item in the CESD, the greater of the
two lengths is entered in the CESD
item. (The CESD type is not changed.)
If the module is being processed for
overlay, the segment numker of the
segment common to both the input item
and the CESD item is also entered in
the CESD item (automatic promotion of
common) .

e Whenever an input ER item matches an ER

in the CESD, both the type and subtype
fields are examined; the ER items are
then resolved in the following manner:

1. If +the suktype fields of both ER
items are not marked, the input
iterm is not entered into the CESD;
the matching ER remains in the
CESD and a pointer to it is placed
in the renumkbering table entry for
the input item.

2. If both items are marked "delete,"”
the new ER 1is entered into the
CESD and the o0ld item remains
there so that they can be delinked
individually (in this case, the
CESD may contain two ER items for

the same symbol). Delinking 1is
descriked in "Second Pass Proc-
essor."

3. If the input ER item is marked for
deletion, but the ER item in the
CESD 1is not marked delete, the
input ER is chained to the match-
ing ER - in the CESD. The chained
ER item remains in the CESD until
the end of module is detected so
that the delink value can be
saved.

4, TIf the input ER item is not marked
for deletion and the ER item in
the CESD is marked "delete" or
"replace," the delete bit in the
subtype field 1is cleared (delete
is changed to replace) and the
item is renumbered. If the match-
ing ER item in the CESD is marked
"no call" or "library member" it
is marked "matched" before renum-
kering.

Section 2: Discussion of Major Divisions 27

5. 1If the input ER item is marked in

the subtype field, but is not
"delete" or "replace," it is
assumed to be "never call"; if the
matching ER item in the CESD is

"library member," routine IEWLCDCN
removes the CESD item from the
chain of library members and the
input ER item is entered into the
CESD and renumbered.

TXT AND RLD PROCESSOR - 15K AND 18K LEVEL E

When the input processor detects a TXT21
or RLD record, it gives control to the TXT
and RLD processor, passing control informa-
tion in the general registers. TXT proc-
essing is shown on Chart CJ; RLD processing
is shown on Charts CH and CI.

TXT Processing

The manner in which TXT records are
processed depends on whether they are part
of a load module or an object module. A
load module contains records in a specified
order. However, in an object module the
records may not be in the proper sequence
because the language translator may have
created them out of order. (The restric-
tions on linkage editor input are described
in the Appendix under "Input Conventions.")

Before any address constants can be
relocated within a control section of an

object module, all TXT records must be
placed in the proper order. This is done
in the input text buffer. Whereas control

sections wvary in length, the text buffer,
into which they are read has a fixed length
(1024 bytes). Therefore, a control section
longer than 1024 bytes must be divided into
portions of 1024 bytes. (The last portion

may be less than 1024 bytes.) Each divi-
sion is called a "multiplicity." For exam-
ple, a 4100-byte control section contains

five multiplicities.

When the first text record of an object
module is read, the input text buffer is
"established" for the ID of the text record
and the multiplicity in which the first
byte of text falls. The ip is
"renumbered," wusing the renumbering table,
s0 that it refers to the CESD entry for
that control section in the output module.

The TXTIOT routine enters +this ID and
muliplicity into the text I/0 table. Input
text records of the same multiplicity and

ID are moved into the input text buffer at
their proper location, relative to their

1Identified by the CCW/RLD record preceding
the text record in a load module.

28

position in that multiplicity, until a

change of multiplicity or ID occurs. When
the ID or multiplicity changes, the BUFTXT
routine writes out the contents of the
input text buffer on SYSUT1, and the buffer
is established for the new ID or multi-
plicity.

If an input record contains text which

spans two multiplicities, the first part is
read into the buffer. BUFTXT then writes
out the contents of the buffer onto SYSUT1
and the remainder of the record is moved
into the Ltuffer, which is now established
to reflect the second of the two multi-
plicities. Whenever BUFTXT writes out the
contents of the input text buffer onto
SYSUT1, an entry is made in the text note
list (for each entry in the text I/O table
there is a corresponding entry in the text
note 1list). The text I/0 takle keeps a
record of each occurrence of a multiplicity
and ID which has been encountered in the
input. The text note 1list contains the
displacement of the record from the begin-
ning of the text kuffer and its relative
track address (TTR) on SYSUT1. The text
I/0 table and the text note 1list will be
used for finding the TXT on SYSUT1 during
second pass processing. The text note list
may itself be written out on SYSUT1 a
raximum of three times if processing a
large program causes it to overflow (a
fourth portion may remain in main storage);

in this case, the TTR of each part of the
text note list on SYSUT1 is entered into
the text I/0 control table.

Since TXT records belonging to load
modules have been previously processed,
they are written out on SYSUT1 as soon as
they are read into the text buffer.

Entries are made in the text I/0O table as
descriked akove. If an input TXT record ID
in a load module is marked for deletion or
replacement in the renumbering table (RNT),
or contains an invalid 1ID, control is
immediately returned to the object or load
module processor. (The record is skipped,
thereky deleting it.)

Note: When the END statement of an input
object module 1is processed, the object
module processor gives control to the TXT

processor so that the BUFTXT routine can
write out any TXT items still in the input
text kuffer. This is called an "END state-
ment purge." An input text buffer purge is
not required at the end of an input 1load
module.

Processing Out-of-Order Text

records in a
records in an
in the proper
translator

contains
However,
may not be
the 1language

A load module
definite order.
object module
sequence because

may have created them out of orderi*. Such
records may contain discontinuities in
addresses (due to a reorigin or a disjoint-
ed control section), or they may not be
contiguous (i.e., text of a given ID and
multiplicity may be interspersed with text
of other IDs or multiplicities). The text
processor must build records of contiguous

text on SYSUT1 so that the second pass
processor can place the text into its
proper position, within its ID and multi-

plicity, in the second pass text buffer.

Each byte of the first occurrence of a
given ID and multiplicity is read into the
input text buffer as it is received. Dis-
continuities and non-contiguous text are of
no consequence at the first occurrence of
an ID and multiplicity. However, once text
of a given ID and multiplicity has been
written out on SYSUT1, any subsequent text
of that ID and multiplicity must Le con-
tiguous to be written out on SYSUT1 within
each text record.

Text of a previously-written ID and
multiplicity is read into the input text
buffer until a discontinuity, or text of a
different ID or multiplicity, is encoun-
tered. The contiguous text in the buffer
is then written out on SYSUT1l. The discon-
tinuous (or mnon-contiguous) text is then
placed in the buffer. If this text rep-
resents the first occurrence of an ID and
multiplicity, the buffer is loaded without
regard for discontinuities or non-
contiguous text. If the text belongs to a
previously-written ID and multiplicity, the
text processor will again place only
continuous text of that ID and multiplicity
in the buffer.

A record that contains non-contiguous
text is called a "loose" record; a record

that contains contiguous text 1is called
"dense". The text note list entry for a
dense record wusually has a non-zero value

in the displacement field. When the second
pass processor reads bpback the text from
SYSUT1 into the second pass text buffer, it
uses this displacement to place the text in
its proper position within its ID and
multiplicity.

RLD Processing

RLD processing basically consists of:

1. Updating each set of relocation and
position pointers (R and P pointers).

iThe restrictions on linkage editor input
are described in Appendix A under "Input
Conventions."

Section 2:

2. Processing each flag and address (FA)
in the input item until the end of the
record or the next item with an R and
P pointer is detected.

Each P pointer of an input RLD record
refers to the ESD entry in the input module
for the control section that contains the
address constant. Each time a new P point-
er (one referring to a different ESD ID) is
detected, the BUFRLD routine writes out (on
SYSUT1) all RLD items for the previous P
that are in the RLD buffer. The relative
track address of the record on SYSUT1 is
noted by entering it in the RLD note list.
If the entry referred to by the P pointer
is mwarked for deletion in the renumbering
table, the RID items for that control
section are not written out on SYSUT1
because the associated text has been
skipped.

Each R pointer of an input RLD record
refers to the ESD entry in the input module
on whose value the address constant
depends. The R and P pointers are updated,
using the renumbering table. Before renum-
bering, the R and P pointers refer to ESD
entries of the input module that contains
the RID items. The pointers are renumbered
so that they point to the proper entries in
the CESD being created for the output load

module. If +the R pointer refers to a
deleted ESD entry, delinking may be per-
formed. If the assigned address of the
symkbol referred to by the address constant

is zero, the address constant is not de-
linked. (Normal relocation is performed.)
When delinking is necessary, control passes
to the ESD processor, which places an entry
in the delink table and then returns con-
trol to the TXT and RLD processor. The
delink table entry contains the address
(delink value) of the symbol being deleted
and the CESD entry number of the identical-
ly nawed symkol that 1is to replace the
deleted symbol.

The RID processor also saves (in the
renunkbering takle) the ID of the delink
table entry for the deleted symbol, and
sets a "delink value saved" indicator. The
ID of the identically-named symbcl and the
ID of the new delink table entry are saved
because they are later used to complete the
delinking operation. The R pointer of the
RID item mnust be modified to refer to the
delink takle entry for the deleted symbol,
but the original R pointer is needed to
process any V-type address constants
referred to in the RLD item. Therefore,
the R pointer is not modified until the
string of flag-address (FA) fields follow-
ing the R and P pointers has been processed
as described below. At that time, if the
module is to be structured for overlay and

Discussicn of Major Divisions 29

it contains V-type address constants! that
refer to the symbol, the 1ID of the
identically-named symbol is inserted into
the calls 1list.

Each FA field of the RLD record is
processed as follows:

¢ The high-order bit of the flag field is
set to zero.

s If the address constant is an A-type,
the renumbering table entry referred to
by the R pointer is checked to deter-
mine if it is marked as a PR type. If
it is a PR, the RLD flag field is also
marked PR (because the second pass
processor must handle PRs in a special
manner) . If the renumbering table
entry 1is not an ER, marked delete or
common, the RLD flag field is marked
for relative relocation. This indi-
cates to the second pass processor that
the difference between the origin of
the control section in the input and
the origin assigned by the 1linkage
editor 1is to be used as a relocation
factor for the value of the address
constant. If the RNT entry is an ER,

marked delete or common, the RLD flag
field is not marked. This indicates to
the second pass processor that the

address constant is to be relocated by
absolute relocation; the second pass
processor uses the 1linkage editor
assigned address of the symbol in the

output module as a relocation factor
for the value of the address constant.
(This procedure is described in the

paragraph "Second Pass Processor.")

e If the address constant 1is a U4-byte
V-type ("branch-type"), and the program
is in overlay, an entry is placed in
the calls 1list, provided that the
address constant refers across control
sections (R not equal P). The calls
list is used by the address assignment
processor to determine which segments
require ENTABs, and the number of
entries each ENTAB must contain.

e For both A-type and V-type address
constants, the multiplicity of the
address field is determined and is
saved in the RLD note 1list if it is
lower than any previous multiplicity in
the RLD record. The RLD note list is
used during second pass processing to

iv-type address constants do not require
delinking, but may be in a FA string with
A-type address constants that do require

delinking (or other control sections in the
same input module may contain A-type
address constants that refer to the deleted
control section).

30

read back RLD data from SYSUT1 (each
RLD note list entry contains the rela-
tive track location (TTR) of an RLD
record on SYSUT1). The second pass
processor uses the multiplicity field
of the RLD note list entry to determine
if the associated RID record should be

read Lkack from SYSUT1 for a given
multiplicity of text.
s When the last FA field in the string

has been processed, all items in the
string have been checked to determine
if they require delinking. If any
A-type address constants in the string
required delinking, the R pointer for
the string is modified to refer to the
associated delink table entry.

Takle 5 shows the actions performed
during RLD processing for each input flag
format, and the format of the flags after
RLD processing. (The "output" column shows

the flag formats that are passed as input
to the relocation routine of the second
pass processor; refer to Table 6.) After

all FA fields have been processed, the RLD
processor determines if the input RLD
record is part of an object module or a
load mcdule.

e If +the input RLD record is part of an
object module, RLD items are placed in
the RLD buffer and the next input RLD
record is processed. The BUFRLD rou-
tine writes out RLD data on SYSUT1
whenever the RLD buffer is full or when
there is a change in the P pointer.
Each +time the contents of the buffer
are written out, an entry is made in
the RLD note list; the entry contains
the renumbered ID of the control sec-
tion containing the RID items, the
number of bytes of RLD information, and
the relative +track address of the
record on SYSUT1. (For a large pro-
gram, the RLD note list may itself ke
written out on SYSUT1 a maximum of
three times. The TTR of each portion
of the note list on SYSUT1 is saved in

the I/0 control table.) When the END
card of an input object module is
processed, the object module processor

gives control to the RLD processor so
that +the BUFRLD routine can write out
any RLD items still in the RLD buffer.
This is called an "END card puxge."

¢ RLD records in an input load module are
read directly into the RLD buffer and
are processed there, without moving
them. When the RLD data is fully
processed, it is written out on SYSUT1
(provided that the control section to

which they kelong is not being
deleted). No RLD kuffer purge is nec-
essary at the end of an input load
module.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Table 5. Flag Field Processing

1 n L) 1
| Input | | Output |
I T 1 k 7 i
| # Flag | Type | Action Performed | Flag | Type I
8 [} 1 1 [i |
L LE 1 T L} 1
{0000LLST |Not PR, |Marked for relative relocation | *0100LLST [Relative |
| |ER, CM, or]| ‘ | | |
| | delete | | | |
k i + t } 1
0000LLST	ER ('02*"	Marked for absolute relocation	0000LLST	Absolute
lin renum-				
	bering]	
	table)			
F t t $: {				
0000LLST	Delete or	Marked for absolute relocation if assigned	0000LLST	Absolute
[CM ('05°')	address of input item is zero i			
i i L 4 I 4				
L] T Ll T] 1				
0000LLST	PR (*06")	[Marked as PR (displacement value)	0010LLST	Pseudo
]	Register	
			IType 1	
k } i + t 1				
0000LLST	Delete or	[Marked "delink value saved" if assigned	¥1000	Delink
jcM	address of input item is not zero			

L [] L 1] 4
L) T L] L] T]
|0001LLST |Type is IRLD is marked branch-type J0001LLST |Branch |
| Inot | | | I
I |checked | | | |
b + + { } {
| 0001LLST |Delete |Marked "delink value saved and other FA items|*1000LLST|Delink |
| or | |in string exist that are non-branch type" and| |

| *1001LLST| |are being delinked | |

L i | L [1 4
] L L) T 1] 1
|0010LLST |Pseudo |None - Remains as a PR (displacement value) |0010LLST |Pseudo |
| |Register | | | Register |
i |Type 1 | | |Type 1 |
b + + + } 1
0011LLST	Type is	Marked as PR (cumulative length) }0011LLST	Pseudo	
	not			Register
	checked			Type 2
Ir 1 1 [} L {				
*Internal types processed during second pass.				

|#¥Refer to "RLD Input Record (card image)"™ and "RLD data"™ (load module) in Section 3: |
| Appendix. |
L 4

END PROCESSOR

When an END statement or the end of an
input load module is detected, control is
passed to the END processor (Chart CK).
The END processor:

e Resets tables that were involved in the
processing of the input module (such as
the renumbering table).

¢ Processes entry point information.

e Deletes any CESD lines marked CHAIN or

DELETE, and keeps track of deleted
lines.
e Enters in the CESD the 1length of a

control section for which no length was
specified in the ESD item (if the
length is contained on the END
Statement).

Section 2:

CONTROL STATEMENT SCANNER

When the input processor detects a con-
trol statement (blank in column one), it
passes control to the control statement
scanner (Charts CL, CM, and CN). The
control statement scanner analyzes the
statement, detects any errors in format,
checks for continuation of conments or
operands, and scans a vVvector table to
determine the appropriate control statement
processor. Control is then passed to the
INCLUDE, REPLACE, LIBRARY, CHANGE, INSERT,
OVERLAY, ENTRY, ALIAS, NAME, SETSSI, or
HIARCHY control statement processor.

The general format for linkage editor
control statements is shown in Figure 8.
The contrcl statement scanner interprets
symbols enclosed in parentheses as "level
1" symwbols; symbols not enclosed within

Discussion of Major Divisions 31

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

parentheses are "level 0." ENTRY, ALIAS,
INSERT, and SETSSI control statement
operands contain only 1level 0 symbols.

CHANGE statement operands always contain
both a level 0 symbol and a level 1 symbol.
The operands of REPLACE, INCLUDE, OVERILAY,
and NAME control statements must contain
level 0 symbols, or both level 0 and 1level
1 symbols. LIBRARY statement operands may
contain level 1, or both level 0 and 1level
1 symbols. The operation to be performed
depends on the operand format.

Operation Operand
OPRTIONX a,..., b(c,d, s le, oD, o
BRI
Pl P1 P1 P1 Pl Before Read8
Processing
—'“_':—:t:}‘ — T T T T " AferReads
r Processing
P2
Le | L
OPDO OPD1
P2 I
l P2
Lb 1 Le_i
OPDO OPDI
[re——
P2
L.b | Ld_J
OPDO OPD1
[~ e
P2
| IN— Le_1
QPDO OPD1
Figure 8. Control Statement Scanner
Operation

The control statement scanner searches a
vector table for the operation symbol to
determine the associated control statement
processor. It then analyzes the operands
using two work arxreas, "OPD1"™ and "OPDO,"
and +two pointers, "P1" and "P2." OPD1 is
used for level 1 operand symbols; OPDO is
for 1level 0 operand symbols. P1 points to
the operand symbol being analyzed; P2
points to either OPDO or OPD1, depending on
the level of the operand symbol referred to
by P1.

An operand symbol referred to by Pl is
placed by the READ8 routine into the work
area referred to by P2. Parentheses and
commas control the switching of pointer P2
between the work areas. For example, when

32

a left parenthesis is encountered, P2 moves
to OPD1 because a level 1 operand symbol
will follow. When a comma, blank, or right
parenthesis is detected, the PROCENTY rou-
tine passes control to the control state-
ment processor that was previously found
during the search of the vector table.

Control Statement Processors

When the operand symbols have been read
into work areas OPD0 and OPD1, control is
passed to the control statement processor
at +the saved entry point. Scanning of the
control statement resumes when the control
statement processor returns control. The
individual control statement processors are
described in the following paragraphs.

INCLUDE STATEMENT PROCESSOR: The include
statement processor builds a chain in the
CESD of items to be included. Each item in
the chain contains the address of the next
item in the <chain (in the chain/address
field - bytes 9, 10, and 11). The last
item in the <chain contains zeros in this
field.

Chained include items have two kinds of
subtypes: "include with pointer" and
"include without pointer." In Figure 9,
the statement INCLUDE M defines M as a
sequential data set. The include statement
processor creates an entry for the ddname M
in the CESD with the subtype "include
without pointer.”

In the statement INCLUDE LIBX(d), A is
defined as a member of a PDS. The include
statement processor creates an entry for A
in the CESD with the subtype "include with
pointer." The pointer is 1in the chain

pointers/chain ID field (bytes 14 and 15);
it contains the CESD 1line number of the
ddname LIBX. A single ddname, such as
LIBX, may be referred to by several
pointers.

In Figure 10, the statement INCLUDE

TEMP(A,B,C) indicates that A, B, and C are
members to be included from library TEMP.
Member B contains the mnested statement
INCLUDE LIBX(U,V,W); this is the last
statement processed in member B. The CESD
is shown at the time when the control
statement scanner has read operand V, but
not W. The include statement processor has
created a CESD line for operand V in the
LIBX include chain. C 1is currently the
last item in the TEMP include chain. When
the control statement scanner reads operand
W, the include statement processor enters a
CESD 1line for W between V and C; this
process is distinct from the one that
actually searches the members U, V, and C
on the library. (Refer to the paragraph
"Include Processor.") At the time chosen

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

CESD
mmx‘l Chn
Chn Addr Seg!|Sub [Pointer

Symbol Type él;e\{erTE o | Type|Chain
ain Length/1D
Register 2 All Purpose Table
—]
8A00 -+ — - — — — —— —— — —»8A00 * M 02 |00000000 Cco
My
OPDO OPD1
* ddname
Figure 9. Include Statement Processing for a Sequential Data Set
Library
//
M Te
_/INCLUDE TEMP (A,B,C - ember B of Temp
pd
INCLUDE
(LIBX
Register 2
L1 cEsD
i : -
| Chn Addr Reverse | Seg | Sub | Chn Pointer Chain
i All Purpose Table Symbol | Type | &\ i ID No | Type|Length /1D
L —
Current 1 .
Include 2 .
Pointer 3 M
4 | *TEMP | 02 BO
7CDO .
I .
U - .
Include Chain e — > 7CDO 8 B | 02 007D10 DO 04
Breaking Point *
Pointer °
L]
/D0 T T —— - 7D10 12 U 02 007D30 DO 19
| L]
—— — - 7D30 14 \% 02 007 D60 DO 19
L)
L]
L]
LIBX | v 7D60 17 c | o2 000000 Do 04
OPDO OPDI °
L]
19 | * LIBX 02 BO
L]
L]
* ddname

Figure 10. Include Statement Processing With Nested Members

for this example, the data set member B is OVERLAY STATEMENT PROCESSOR: The overlay
being read; data set member A has been read statement processor maintains a record of
and therefore is no longer in the CESD as a the current segment number and updates it
member name, but data set members U, V, and by one each time a new OVERLAY statement is
C have not yet been read. encountered. The relationship of segments
in an overlay tree structure is kept in

The chained CESD entries created by the SEGTAl (see Figure 11). Entry n in SEGT21
include statement processor are later pro- contains the number of the segment that
cessed by the include processor (Chart CO). precedes the nth segment of the overlay

Section 2: Discussion of Major Divisions 33

Form Y28-6610-2, Page Revised by TNL Y28-2356,

o0 0 —MVN—O

Register 2

m—

All Purpose Table
Address of
SEGTAT [7]

Starting Address of
Overlay Chain

Address of A _]— 4 ——

OPDO OPD1

read. Name B is no longer in the chain,

Figure 11. Overlay Statement Processing

tree structure (the next higher segment in
its path). The overlay statement processor
creates a chain of overlay items in the
CESD and wupdates SEGTAl. If the level 1
operand (REGION) is detected, the current
region number is incremented by one, and a
zero is entered as the previous segment
number in SEGTAl.

If an OVERLAY statement is encountered
that refers to a node point higher in the
overlay tree structure, all symbols identi-
fying node points higher in the path are
removed from the chain; their CESD lines
are marked "null." For example, in Figure
11, when the statement OVERLAY A is encoun-
tered after segment 4, the CESD entry for
symbol B is marked null and is no longer in
the chain. If an OVERLAY B statement was
encountered at the end of segment 5, a new

node point would be established for B, and
symbol B would again be entered in the
CESD.

34

11/15/68

OVERLAY A OVERLAY A
2 5
OVERLAY ClOVERLAY C
6
OVERLAY B VERLAY B : 7
3 1
4 I
CESD
Chn Addr/ | ¢ , | Chn Pointer
Symbol | Type | Reverse Neog .?u o | Chain
Chain ID s Length/ID
.
°
)
‘—————T A 02 Addrof C | 01 | 90
[) |
. |
. |
14+ _L_/
-
{ °
\ L]
~» C 02 000000 05 | 90
.
.
°

HIARCHY STATEMENT PROCESSOR: The HIARCHY

routine first determines whether the
hierarchy number is valid. If it is inval-
id, the statement is printed, an error

message is written, and the remainder of
the statement is ignored. 1If the number is
valid, it is converted to binary and saved
for the Scan routine.

Processing of the statement continues
with the collection of the next symbol (up
to a comra or a blank). The CESD is
searched for this symbol; the location in
the hierarchy table corresponding to the
CESD item 1is set to the hierarchy number
specified. (The hierarchy table is built
during initialization if HIAR was specified
on the EXEC statement. The hierarchy table
consists of cne byte per entry in a one-to-
one correspondence with the number of items
allocated to the CESD. The address of this
table 1is kept in a full word in the all
purpose takle.)

Form Y28-6610-2, Page Revised by TNL Y28-2356,

If the symbol does not appear in the
CESD, the symbol is entered in an unused
entry in the CESD, marked external
reference, and the hierarchy number is
stored in the corresponding entry in the
-hierarchy table. This procedure is

repeated for each additional symbol in the
HIARCHY statement.

The intermediate output routine uses the
hierarchy table to place the hierarchy
number associated with each CESD item in
the scatter/translation table.

INSERT STATEMENT PROCESSOR: The insert
statement processor scans the CESD for the
symbol indicated in the INSERT statement.
If the symbol is found, the segment number
field is changed to the number of the
segment that contains the INSERT statement.
If the symbol is not found in the CESD, a
new ER-type CESD entry is created. 1In

Section 2:

11/15/68

either case, the new CESD entry is wmarked
"insert™ in the subtype field, and the
segment number of the INSERT statement is
placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS:
The replace and change statement processors
build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so
marked in the subtype field. The ESD
processor examines the replace/change chain
before processing any ESD item. Since a
REPLACE or CHANGE statement applies only to
the module that immediately follows it in
the input, the replace-change chain is
removed from the CESD at the end of the
module.

When a REPLACE statement or a CHANGE
statement operand contains two symbols,
such as CHANGE A (B), A and B are entered

Discussion of Major Divisions 34.1

in consecutive lines of the CESD. Only the
first line of the pair (the 1line for A)
contains the address (in the chain address
field) of the next item in the
replaces/change chain.

NAME STATEMENT PROCESSOR: The name state-
ment processor places an entry in the all
purpose table containing the name under
which the following input module is to be
STOWed in the PDS directory. If the oper-
and contains the level 1 symbol (R), a bit
is set to indicate that the module is to be
STOWed as a replacement for a module of the
same name. Another bit is set to indicate
that a NAME statement was encountered; the

input processor tests this indicator and
terminates input operations for this 1load
module if it is set. If a NAME statement
is received from any input source other

than
NAME statements are accepted only if
are in the primary input.

SYSLIN, the errxor routine is entered;
they

SETSSI STATEMENT PROCESSOR: The SETSSI
statement processor converts the eight
bytes of hexadecimal information specified
on a SETSSI statement to a U-byte field,
and enters it into the APT. During final
processing, this information is entered
into the system status index, a U4-byte
extension of the user data area in the PDS
directory. The index contains information
describing the status of memrbers in the
library and is used for maintenance purpos-
es.

ENTRY STATEMENT PROCESSOR: The entry
statement processor places the symbol spec-
ified in an ENTRY statement in the all
purpose table. The symbol will override
any symbol specified in an END statement as
the entry point for the module.

ALIAS STATEMENT PROCESSOR: The alias
statement processor creates chained CESD
entries for a maximum of five alias names
specified in ALIAS statements. During
address assignment, these entries are used
to build the alias table.

LIBRARY STATEMENT PROCESSOR:
statement processor creates chained CESD
entries for the operands specified in
LIBRARY statements; a chain is created for
each distinct library. Each chain begins
with a 1library ddname and contains all
member names specified for the library (see
Figure 12).

The library

A member name specified in a LIBRARY

statement can result in +two kinds of ER
subtypes: "matched library member" or
"unmatched 1library member." If a CESD

entry 1is created for a member name speci-
fied in an input ER and also specified in a
LIBRARY statement, it is called a "matched
library member." However, if the member

Secticn 2:

name was specified only in a LIBRARY state-
ment, the entry subtype is “unmatched
library memker."

INCLUDE PROCESSOR
The include processor (Chart Cco)
receives control when:

1. The control statement scanner has
detected an INCLUDE statement and the
include statement processor has built
an include chain.

2. The input processor has detected an
end-of-input, and the "more includes"
indicator in the all purpose table is
on.

The include processor chcoses from the
include chain the name of the next module
tc be 1included. It performs preparatory
functions (OPEN, BLDL, and FIND), using the
library open (LIBOP) routine, so that the
input processor can read in the module.

The LIBOP routine (Chart CQ):

1. Sets an input pointer to the library
read block, an area in main storage.

2. Closes the SYSLIB DCB (unless it 1is
open for a PDS currently being used).

3. Changes the data set organization
field of the DCB from partitioned to
physical sequential if a sequential
data set 1is to be included, and
updates the ddname field.

4. Opens the DCB (unless the DCB is
already open and in use).

5. Tests the record format field (RECFM)
in the DCB to determine if the includ-
ed module is a load module (U format)
or an okject module (F format). If it
is a 1load module, the LIBOP routine
sets the "load module" indicator in
the all purpose table. This indicator
is tested by the input processor to

determine the type of module being
read.
6. Uses the BLDL macro instruction to

obtain the attributes of the included
module (if it 1is a load mcdule) and
may "downgrade" the attributes of the
output load module in the APT accord-
ingly.

7. Uses the FIND macro instruction and
the directory entry obtained from BLDL
to set a pointer in the DCB to the
first record of the member (if it is a
load module).

Discussion of Major Divisions 35

An example of include processing is set in the all purpose table, and a pointer
given in Figure 13. The input pointer is to the load module buffer is placed in the
set to the address of the library read licrary read block. The attributes of A
block. The address of the current include are obtained, wusing BLDL, and the attri-
item is contained in the all purpose table. butes specified on the EXEC statement are

updated accordingly. (The attributes of

Assuming that no includes have yet been the output load module may be downgraded as
processed, A will bhe the first item includ- a result.) A pointer in the DCB is then
ed. The subtype 'D0' indicates that A is a set to the first record of the member,
member of a partitioned data set. The using the FIND macro instruction, and the

pointer 000D refers to the data set DATA- "include initiated" indicator is set in the
SETX. Assuming that DATASETX is not cur- all purpose table. The chain pointer field

rently open and the SYSLIB DCB is not of the CESD entry for A is then tested.
opened for another data set, the SYSLIB DCB Since, in the example shown, this field
is opened for DATASETX. (The RECFM field does not contain zeros, the "more includes”
of the data set DSCB 1is merged into the indicator in the all purpose table is set,
DCB.) Assuming that the RECFM field indi- and control returns to the input processor
cates U-format, a load module indicator is to read this data.

Register 2 All Purpose Table

("LIBRARY LIBI (MARY} I

(LIBRARY LIB2 (SAM,PETE)

LIBRARY LIBI (JOE) []

I
|
-
{ _____________________________ —
; Chn Addr Seg|Sub Chn.Poinrer/ bol | T Chn Addr/ Seg | Sub C:n_POinfEF
Symbol | Type |/ Reverse Chain Symbo ype | Reverse Chain
i No [Type hai No | Type h
| Chain 1D Length/ID Chain 1D Length/ID
L>OI ol
02 02
03 03
04 JOE 02 00 04 JOE 02 0C 03 0A
05 05
06 06 L1B2 02 00 BO 07
a7 07 SAM 02 06 02 08
08 PETE 02 00 08 PETE 02 07 03 00
09 09
0A 0A MARY 02 04 02 00
0B 08
ocC 0oC LIB1 02 00 BO 04
Diagrar A Diagram B
MNotes:
® The CESD shown in diagram B results from the CESD shown in diagram A after
Chn Addr Chn Pointer reading in three library cards. A chain with direct and reverse pointers is
Symbol Type |/Reverse Seg|Sub Chain created for LIB1 and also for LIB2.
Chain 1D | N°|TYPe | ength /1D
T ® JOE and PETE were ERs (subtype 00) and became "matched library member"
o (subtype 03).
02 ® SAM and MARY were not previously in the CESD. They are created as "unmatched
8131 JOE 00 library member" (subtype 02).
05 . ® The CESD shown in diagram C results from the CESD shown in diagram B after
06 Lib2 02 00 BO 07 reading in an input module containing the ER MARY and the SD JOE. (Only the
07 SA,M 02 06 02 08 library chains are shown),
08| PETE | o 03 00
09 ® JOE is removed from the chain in diagram C, and the chain pointers are modified.
oA MARY 02| oc 03 00
0B ® MARY becomes a "matched" subtype and will be called by the automatic
oc LiBI 02 00 8O 0A library call processor (unless resolved by other input).
® SAM remains "unmatched" and will be ignored by the automatic library call
Diagram C processor (unless matched in other input).

® Figure 12. Likrary Statement Processing

36

INCLUDE DATASETX
(A,B,C),M

Register 2 All Purpose Table

|:l_——-——> "MORE INCLUDES" INDR
C T 1

1
CRRTINCL
[orB8 }—0u

INCBRKPT

o]

Input Pointer

J| F278

Library Read
Block
F278 77C0
2400
400
SYSLIB DCB
9400 77C0 RECFM
DDNAME
Load BLKSIZE
Module
Buffer

Figure 13. Include Processing

The input processor reads memker A using
the input pointer and library read block.
Module A is then processed. When the end
of module A is reached, the input processor
again calls the include processor because
the "more includes" indicator in the APT is
set.

When the include processor receives con-
trol again, the chain address field of the

CESD entry for A is used to find item B;
item B is then processed in the same manner
as A. Item A is deleted from the chain,
and the CESD line is marked "null."

Note: If the item to be included is a
sequential data set (such as M, in Figure
10), there is no chain pointer in the CESD
entry. Differences in processing for this
type of include item are shown in Charts CO
and CQ.

Section 2:

D LOC. 0 8 12 13
01 9F38 -
02 9F48 c 000000 DO [000D
03 9F88
04 9F68 B 9F88 DO | 000D
05
06 9F88 M oF48 €0 0000
07
08
=09 ores A 9F68 | |00 [000D
0B
e
OD 9FF8 DATASETX BO
OF
OF
10
n)
SYSLIN
Read Block
F28C 7768
967C
50
SYSLIN DCB
7763 | RECFM
967C SYSLIN :
Buffer DDNAME
BLKSIZE

AUTOMATIC LIBRARY CALL PROCESSOR

The input processor passes controcl to
the automatic library call processor (Chart
CP) at the end of SYSLIN input, or when a
NAME statement has been detected (provided
that the NCAL option was not specified and
no more includes are to be processed).

The automatic 1likrary call processor
performs two series of CESD scans. The
first series of scans operates on unre-
solved ERs specified on LIBRARY statements.
It finds the first ddname that contains a
pointer in the chain pointer field (bytes
14 and 15). Such an entry is the first
item in a chain of members associated with
this ddname; there is a distinct chain for
cach ddname that was specified on a LIBRARY
statement. The second series of scans
searches for external references not speci-
fied on ILIBRARY statements and attempts to
resolve them by calling members of the same

Discussion of Major Divisions 37

name from SYSLIB.1

An example of automatic 1library call
processing 1is given in Figure 14. Diagram
A shows two library chains that were built
in the CESD by the library statement proc-
essor. In diagram B, an SD item for JOE
has been entered into the CESD, resolving
the reference to JOE. (JOE was removed
trom the <chain by the ESD processor, and
i-he LIB1 chain ID now points to the 1line
containing TOM.) The automatic library
call processor operates on the library
chains, as modified by the ESD processor

diagram B).

Diagram A
—— Sub-
CESD Type Type
ID 0 8 12 13
01
02 LIBI 02] 00 BO| 04
03)
04 JOE 02 02 03 | oA
85 SIMPLE 02 0C
6 L.IB2 02 00 BO | 07
07 SAM 02| 06 02| 08 j
82 PETE 02| 07 03] 00 D
0A TOM 02 04 02 00
0B
oC
oD
Diagram B
CESD E—
ID 0 8 9 10 12 13 14 15
01
02 LIBY 02 00 BO A
03
04 JOE 00 | 06E273 0121E3
05 SIMPLE 02 00
o) LIB2 02 00 BO 7
07 SAM 02 06 02 8 j
08 PETE 02 07 03 0 D
09
0A TOM 02 02 02 0
0B
oC

Figure 14. Automatic Library Call Process-

ing

In the first series of scans, +the CESD
is searched for a ddname (type 02, subtype
BO) with a chain pointer. The ddname item

LIB1 is found; its chain ID points to TOM.
Because TOM is unmatched (subtype 02) it is
not called and since TOM is the last item
in the chain (0 in the chain ID field), the
scan 1is resumed for another ddname with a
chain pointer. LIB2 is found; its chain ID
points to SAM. No call is issued for SAM,
since it is unmatched. The chain ID of SAM

1SYSLIB is the standard library whenever
the linkage editor is executed as a job
step. If another program calls the linkage
editor via the LINK macro instruction, the
ddname of the standard library is passed in
a parameter list.

38

is matched
external ref-
operand of a
LIBOP routine

points to PETE, which
(indicating that PETE is an
erence, and not Jjust an
LIBRARY statement) . The
opens LIB2 and uses the BLDL macro instruc-
tion to obtain the attributes of PETE (the
attrikutes of PETE are not obtained if the
format is F). A "BLDL attempted" indicator
is set for PETE so that no other search for
PETE will be made in the event of an
unsuccessful BLDL or non-resolution of the
ER for PETE ky the member PETLZ. LIBOP uses
the FIND macro instruction to set a pointer
in the SYSLIB DCB to the member PETE;
control is then returned to the input
processor to read in PETE.

When the input processor returns control
again to the automatic library call proc-
essor, the scan for ddnames resumes at the
beginning of the CESD, rather than at the
CESD 1line where the scan was interrupted,
because additional ddname items way have
been entered at any available line in the
CESD. (The input processor may have read
in okject modules with additional LIBRARY
statements.) When the automatic 1library
call processor reaches the last line of the
CESD, it begins the second series of scans.

During the second series of scans, the
CESD is searched for "unmarked" external
references (type '02', subtype'00'). These
are ER items not specified on LIBRARY
statements. In diagram B, the scan finds
SIMPLE. Assuming that SYSLIB is the ddname
for the standard library, SIMPLE is called
from SYSLIB in the same way that PETE was
called from LIB?. Every time the automatic
library call processor receives control
from the input processor during the second
series of scans, it resumes the scan at the
beginning of the CESD (kecause ER items
from a library member may have been entered
in any available CESD line).

When the automatic library call proc-
essor completes the second series of scans,
control is passed to the address assignment
processor.

ADDRESS ASSIGNMENT PROCESSOR

At the conclusion of input processing,
when all automatic calls have been proc-
essed, control is ©passed to the address
assignment processor (charts DA through
DD). The address assignment processor per-
forms the following operations:

e Closes the SYSLIB DCB if it was opened
during input processing. It deletes
CESD entries for ER items marked
included, called, ddname, or overlay in
the subtype field. These lines are
marked "null" and are deleted 1if the

Form Y28-6610-2, Page Revised by TNL Y¥28-2356, 11/15/68

module is processed again in a subse-
quent execution of the linkage editor.

Computes, for programs in overlay, the
size of SEGTAB%, enters the size in the
all purpose table, and places a private
code delete entry for the SEGTAB in the
CESD. The PC-delete type entry is
deleted from the module if it is pro-
cessed again by linkage editor.

Uses the ENTAB size determination rou-
tine (Chart DB) to enter segment num—
bers for label references in the CESD.
I1f the program is in overlay, this
routine also scans the calls list
(built during RLD processing), entering
pointers from one chain of calls to the
next chain; determines +the number of
ENTAB bytes2 for each segment; and
places a PC-delete type entry 1in the
CESD for each ENTAB. (Refer to "ENTAB
Size Determination Routine.")

Scans the CESD and assigns temporary
linked addresses to SD-, PC-, and CM-
type entries. Each segment 1is consi-
dered to ke at a zero origin. The
temporary starting address of each con-
trol section is computed with respect
to its 1location in the segment, rela-
tive to the =zero origin (plus any
adjustments for boundary alignment).
These addresses are temporary because
the starting addresses of the segments
must later be relocated with respect to
their positions in the overlay tree.
If the program is not in overlay (con-
sists of a single segment) the
addresses are final, because no further
relocation by address assignment is
necessary.

Computes the temporary relocation con-
stant for each control section (the
difference between the temporary linked
address and the assigned address in the
input) and places it in the relocation
constant table (RCT). If the program
is not in overlay, these are the final
relocation constants (relative reloca-
tion factors).

Accumulates the length of each segment
in the leftmost three bytes of an entry
in the segment length table (SEGLGTH).
The boundary alignment factor of the
first control section in the segment is
placed in the fourth byte of the entry.

Determines the address of each PR-type
entry in the CESD, wusing the total

length of all PRs previously encoun-
tered, plus the boundary alignment fac-
tor. This address is placed 1in the
CESD entry for the PR. The length of
this PR is then added to the cumulative
PR length.

Processes the SEGLGTH table (if the
program is in overlay) to determine the
starting address of each segment, rela-
tive to the beginning of the program.
SEGTAl is checked to find the proper
location of each segment in the tree.
SEGLGTH at this time contains the
length of each segment. To determine
the starting address of a segment, the
length of all previous segments in the
same path are added, together with any
adjustments for boundary alignment.
(Boundary alignment adjustment is de-
termined by the last three bits of the
address of the first control section in
a segment.) This sum, minus the boun-
dary alignment factor for the segment,
is the segment relocation constant
(SRC) . The SRC is then placed in the
rightmost three bytes of the SEGLGTH
table. The sum of the SRC, the boun-
dary alignment factor for the segment,
and the segment length is placed in the
leftmost three bytes of the SEGLGTH
table entry for the segment. It is the
length of the path of the segment
(including the segment itself). At the
completion of this process, the entry
in SEGLGTH for each segment contains
the cumulative length of its path; the
longest of these lengths is the program
length.

Performs a second scan of the CESD if
the program is in overlay. The segment
relocation constant in the SEGLGTH
table is added to the temporary 1linked
address in the CESD entry for the
control section; this sum is the final
linked address. The SRC is also added
to the temporary relocation constant in
the relocation constant table; this sum
is the final relocation constant for
the control section.

Makes a final scan of the CESD to
assign a final linked address to each
label reference. (If in overlay, this
is the third scan of the CESD; if not
in overlay, it 1is the second scan.)
The CESD entry for each LR contains a
reference to the control section in
which it resides. The relocation con-
stant for +that control section 1is

1SEGTAB size = 24 + (4 x number of
segments).

2ENTAB size = 12 + (12 x number of unique
downward calls per segment).

located in the RCT and is added to the
texrporary 1linked address in the CESD
entry for the LR. This sum, the final
linked address for the LR, is placed in
the CESD.

Section 2: Discussion of Major Divisions 39

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

e Marks the program as not executable if
there are still unresolved external

references and if neither the no call
option nor the LET option has been
specified.

e Uses the entry processor (Charts DC and
DD) to build the alias table and com—
pute an entry point for the program.
(Refer to "Entry Processor.")

ENTAB Size Determination Routine

The ENTAB size determination routine
computes the size of ENTABs so that the
size of each segment in an overlay program
can be determined and relative relocation
factors can be computed for use by the
second pass processor. The size is deter-
mined by the number of downward calls, or
calls across regions, to symbols that are
not referred to by segments higher in the
path of the calling segments.

An example of the ENTAB size determina-
tion routine is given in Figure 15. The
overlay tree structure shown in the illus-
tration consists of nine segments residing
in two regions; all references between
segments are made using V-type address
constants. The ENTAB size determination
routine:

e Scans the CESD for LR-type entries and
enters their segment numbers. In
Fiqure 16, item 6 is an LR item; its
ID/1length field points +to the CESD
entry for the control section in which
it resides (1line 3). The segment numb-
er contained in line 3 (segment number
3) 1is entered 1in the segment number
field of the LR item.

e Scans the calls list, inserting chain-
ing values that point from one group of
R and P pointers to the next group.

SEGTAL
I 1 0
e =V @) T 2 |
f AR
| 4 2
| 5 1
| ' 6 0
X V- 7 6
CE |
ESD | | 8 6
Chain Seg|Sub~| Length | A 43 GcA4 ! 9 0
Symbol Type | | Downward
Address | No|Type| / ID \\—-PB B v (H)—" \ X Calls List
1 D N 9 | 1
2 H sD 2 Region 1 o [
3 A SD 3 Region 2 o !
4 c sD 5 ‘ §
5 4 1
6 B LR 3 3 5
7 I) 1 g !
8 E sD 8 8 34
9 G SD 4 9
10 F M 6 N
11 PC 7
* | PC(d)] 1 60 : :
+1PC(d) 1 36 | l
*|PC()] 3 24 * PC - delete type entry for SEGTAB
F|PC(d) 4 24 ¥ PC - delete type entries for ENTABs
CALLS LIST
N
l 8 I 9 \ 2 \ 8 l é l 8 T 1 ‘ [} | 2 [6 1 6 l 3 8 { 8) 7 l 6 | 4 \ 0 l |
[
N R R cv P R cv P R P R o P R R A
- P
™ TN N ~ ~ /’\\
~ _ —~ 7 S~ ~ — ~ — ~ — |

* CV = Chaining Value (gives number of bytes to next CV)

Figure 15. ENTAB Size Determination

40

End of Calls List

Form Y28-6610-2, Page Revised by TNL Y28-2356,

All Purpose Table

Alias Chain Address

11/15/68

Figure 16.

e Scans

Address)|(CESD - Before Entry Processing
Pointer
{ | . RCl'm Addr Seg | Sub | Chn
I Symbo ypeReverse | M Tupe| Chn Lth
Chain ID g
| /1D
. . .
| .
i o
Address X 3 SAM ER | Addr Y=|~ |Alias
T et
~-»>Address Y 7 JOE ER | Addr Z- Alias
. }
T e —T—T——F
N~ p-Address Z 10 BILL ER 000 Alias
.
.
.
~—~=»20 SAM SD| * LAI (Length)
{ ° J
——————— —t — 1 — - —
22 JOE LR | *LA2 20-7
L]
* Linked address CESD - After Entry Processing
Chn
Symbol T Ehn Addr Seg[Sub |Pointer
ymbol ype C:ve.rselD No |Type |Chn
atn Lgth/ID
Alias Table)
Alias Symbol ESDID °
.
SAM 3I—+—— — — — —»3 SAM Null LAY 20~\|
.
b |
JOE -+ — — 7 JOE Nulf[LA2 20\1
°
® |
BILL 0 10 BILL Null 000 Alias |
_® __ L] I S I
i :
N —»20 SAM SD LA (Length)
.
.
.
22 JOE LR LA2 20
.

the calls list, for each segment
(starting with segment 1), to £find
symbols referred to by that segment.
For each reference found, the type of
cal (upward, downward, or exclusive)
is determined. If an ENTAB is required
for the segment, its size is determined
and control is passed to routine IEWL-
CAD1, which enters a PC-delete type
entry for the ENTAB in the CESD. Ref-
erring to Figure 15, the segments are
processed in the following manner:

1. The calls list is
pointers that
sections in segment 1.

scanned for P
refer to control
If one is

Section 2:

Processing of Alias Symbols by the ENTRY Processor

found, the ENTAB size determina-
tion routine examines the asso-
ciated R pointers (which refer to

referenced symbols) to determine
the segment in which each
referenced symbol resides. In
Figure 16, the fifth P pointer
refers to 1line 7 of the CESD,
which contains an SD-type entry
for a control section in segment
1. The associated R pointers
refex to 1line 6 (symbol B in

segment 3) and line 4 (symbol C in
segment 5). For each reference,
the type of call (upward, down-
ward, or exclusive) is determined,

Discussion of Major Divisions 41

Form Y28-6610-2, Page Revised by TNL Y28-2356,

42

using SEGTA1l and the segment num-
bers of the calling and called
segments. In Figure 15, SEGTAl
indicates that segment 1 is in the
path of segments 3 and 5; there-
fore, the calls from segment 1 to
B and C are downward calls. This
is noted in the downward calls
list by entering segment number 1
in the lines referred to by the R
pointer (lines 6 and 4). Since
segment 1 is the root segment, it
must have an ENTAB; the size of
the ENTAB is determined and rou-
tine IEWLCAD1 creates a PC-delete
type entry for the ENTAB in the
CESD.

When the scan for segment 1 is
completed, the ENTAB size deter-
mination routine scans the calls
list for P pointers that refer to
segment 2. In Figure 15, the
third P pointer in the calls list
refers (via the CESD) to segment

2. The associated R pointer
refers to CESD line 6, which con-
tains segment numbexr 3. This

indicates (via SEGTAl) a downward
call from segment 2 to symbol B in
segment 3. In this case, however,
no entry is made in the downward
calls list because it indicates a
call to B in segment 3 from seg-
ment 1, which is higher in the
path of the calling segment (seg-
ment 2). No ENTAB is required for
segment 2 because the reference to
symbol B in segment 2 can be
resolved through the ENTAB entry
in segment 1.

The ENTAB size determination rou-
tine scans the calls list for P
pointers that refer to segment 3.
In Figure 15, the fourth P pointer
in the calls list refers to CESD
line 3 (segment 3). The R pointer
refers to CESD line 8 (segment 8).
SEGTA1 indicates that the call
from 3 to 8 is downward, across
regions, and the call is noted in
the downward calls list. Segment
3 requires an ENTAB because it
contains a downward call to a
symbol not referred to by a seg-
ment in the path of the calling
segment; the ENTAB size is deter-
mined, and IEWLCADl1l creates a PC-
delete type entry for the ENTAB in
the CESD.

The ENTAB size determination rou-
tine scans the calls list for P
pointers that refer to segment 4.
In Figure 15, the first P pointer
in the calls list refers to CESD
line 9 (segment 4). The R point-

11/15/68

ers refer to line 2 (segment 2)
and 1line 8 (segment 8). SEGTAl
indicates that the call from 4 to
2 is upward, while the call from 4
to 8 is downward across regions.
The upward call is ignored because
the address constant can be
resolved directly to the
referenced symbol. The downward
call from 4 to 8 is noted in the
downward calls list, replacing the
previous entry for segment 3
(because no segment with a segment
number greater than 4 can have
segment 3 in its path). Since an
ENTABR is required, the size is
determined and a PC-delete entry
is created in the CESD.

This process continues until all seg-
ments have been processed. The required
ENTABs are built by the second pass proces-—
sor. (Refer to "ENTAB Creation™ and "Relo-
cation of V-Type Address Constants in
Overlay.")

Entry Processor

The entry processor (Charts DC and DD):

e Enters into the alias table any alias
syrbols that were chained together and
saved in the CESD by the alias state-
ment processor. Each entry in this
table consists of an 8-byte symbol
field and a 2-byte ESDID field. For
each saved alias symbol, the entry
processor scans the CESD for a matching
SD-type or LR-type entry. If no match
is found, a zero is placed in the ESDID
field of the alias table entry for the
syrbol. If a matching SD or LR entry
is found, the ESDID of the alias entry
in the chain is placed in the ESDID
field of the alias table entry for the
symbol. (See Figure 16.) The address
assigned by 1linkage editor to the
matching SD or LR and the ESDID of its
control section are placed in the CESD
entry for the chained symbol, and the
type of the chained symbol 1is changed
to null.

e Determines whether the entry point was
specified as an address on an END
statement, or as a symkol on an ENTRY
statement or END statement:

1. If the entry point was specified
as an address on an END statement,
the assigned address is determined
by either absolute or relative
relocation. 1If the ID on the END
statement referred to an ER which
was resolved with an SD or LR, the
address assigned by the 1linkage
editor to the SD or LR is added to
the address from the END statement

Form Y28-6610~2, Page Revised by TNL Y28-2356,

(absolute relocation). If the ID
on the END statement referred
directly to an SD or PC, the
relocation constant for the SD or
PC is added to the address from
the END statenment (relative
relocation).

2. If a symbolic entry point was
specified on an ENTRY statement or
END statement, the CESD is scanned

for a matching SD- or LR-type
symbol. The address of the match-
ing symbol is wused as the entry
point.

3. If no entry point was specified,
the starting address of the SD- or
PC-type control section (not
marked delete) with the lowest
assigned address is chosen as the
entry point. The entry point
associated with the main name (not
an alias) and all alias entry
points must be in segment number
one 1if the program is in overlay.

INTERMEDIATE OUTPUT PROCESSOR

e Writes

The intermediate output processor (Chart

out the CESD on SYSLMOD in
groups of 15 entries per record.® (The
last record may consist of less than 15
entries.)

Builds a half ESD (HESD), consisting of
the last eight bytes of each CESD
entry. (The symbol is deleted from
each CESD entry to conserve main
storage space during second pass pro-
cessing.) The HESD is not complete at
this time. Relative relocation factors
are later moved into the HESD when the
length/ID field is no 1longer needed.
(The ID of each label reference is used
in building the scatter and translation
tables.)

Builds and writes out the segment table

(SEGTAB), preceded by a control record
describing it, if the program is in
overlay.®* SEGTAB contains information

required by the overlay supervisor.

Builds a scatter table and a transla-
tion table for a program that is to be
scatter loaded and writes out scattexr/

11/15/68

translation records
able to
time.

in a form accept-
program fetch at execution
The scatter/translation informa-

tion is written out on SYSIMOD in
1024-byte records. The first four
bytes of each record are used to iden-

tify the records as scattexr/translation
information. Storage hierarchy desig-
nations are included in the tables if
the HIAR bit is set. If the length of
scatter/translation information is
greater than 1020 bytes, the last 1020
bytes (plus four bytes of header infor-
mation) are written out as the first
scatter/translation record. The data
in the last record may be 1020 bytes,

or less. (See Figure 17.)

Completes +the HESD by moving in rela-
tive relocation factors from the relo-
cation constant table for sp-, PC-,
CM-, or LR-type HESD entries. Each
relocation constant is a 3-byte value;

the value may be negative2 because it
is the difference between the address
assigned to a symbol by the 1linkage
editor and the address of the symbol in
the input module. Unused HESD space is
made available to the second pass RLD
input buffer (by decreasing the start-
ing addresses of the RLD buffer and the

TXT and RLD note 1lists, which are
located between the HESD and the RLD
buffer).

Reads the TXT and RLD note lists into

main storage if they were placed on
SYSUT1 during TXT and RLD processing.
(Each note list may have been written a
maximum of three times on SYSUT1 for a
large program. In this case, TIRs
pointing to the locations of note 1list
information are contained in the I/0
control table.)

Determines the control section contain-
ing text with the highest ESD ID in the
program (or in each segment, if the
program is structured for overlay), and
the highest segment number of the seg-
ments that contain text. (This infor-
mation 1is necessary so that the second
pass processor can determine when to
set the end-of-segment or end-of-module
indicator.) The highest ESDID is de-
termined ky scanning the text I/O table
for the ESDIDs of control sections that

contain text. This ESDID is entered
into the high ID (HIID) table along

with its associated segment number.

iThe CESD and control record are not writ- 2If it is negative, an indicator is set in
ten out on SYSLMOD if the "not editable" the HESD to note that it is in complement
attribute is specified. form.

Section 2: Discussion of Major Divisions 43

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68
Low-Order Position
Beginning of in Main Storage
Translation >
Table D 500 bytes
Beginning of 4-byte header
Scatter ——— g} — —C— — 1020 bytes
Table
______ [] [] [1 [1
B 1020 bytes A B C D
e
1024 bytes 1024 bytes 1024 bytes 504 bytes
A 1020 bytes

High=-Order Position
in Main Storage

Figure 17.

SECOND PASS PROCESSOR

After intermediate output processing,
the second pass processor reads back TXT
and RLD records from the intermediate data
set (SYSUT1) into the second pass text
buffer and second pass RLD input buffer.
Address constants contained in the text are
relocated and control/RLD records are
created. The TXT and control/RLD records
are then written out on SYSLMOD in a format
that can be loaded by program fetch. The
second pass processor also creates informa-
tion required by the overlay supervisor and
program fetch for the processing of an
overlay 1load module; this information con-
sists of ENTABs and associated RLD items
used to relocate the address constants.
The general operation of the second pass
processor 1is described in the following
paragraph. The method used to relocate
address constants is described in "Reloca-
tion of Address Constants"™ and "Relocation
Routine."

SECOND PASS OPERATION - 15K AND 18K LEVEL E

When the second pass processor (Charts
FA through FE) receives control, it per-
forms the following operations:

s The half ESD (HESD) table is searched
for a PC- or SD-type entry to determine
the ID of the first control section to
be processed 1in the current segment.
(The current segment is initially seg-
ment number one.) The multiplicity is
initialized to zero and the text input/
output table (TXTIOT) is then scanned
for this ID and multiplicity; the entry
containing this ID and the correspond-
ing item in the text note list are used
to find the location of that multipli-
city of text on SYSUT1.

by

Writing Scatter/Translation Records

—

Sequential Order of Records

All text records that pertain to the
current multiplicity are read from SYS-
UT1 into the second pass text buffer.
The second pass text buffer consists of
two 1K areas; each area can hold a
single multiplicity of text (1024
bytes). Two areas (output text buffer
1 and cutput text buffer 2) are used to
provide for input/output overlap and
processing of "split" address con-
stants. When text is read in, it 1is
placed 1in only one of these 1K areas;
sirultaneously, text may be written out
of the other 1K area (unless a split
address constant 1is being processed).
The length of text read into the buffer
is determined by checking the residual
byte count in the input/output klock
(ICB). (Maximum size - residual byte
count = size of record.)

associated with the
currently being pro-
cessed are read into the second pass
RLD input buffer. The RLD input buffer
length is a multiple of 244; RLD reco-
rds are read into it 244 bytes apart to
simplify recognition of the beginning
and end of RLD records when they are
relocated. (Relocation is performed by
record.) The second pass processor
searches the RLD note 1list for the
current ID, and uses the associated TTR
to £find the location of the RLD records
on SYSUT1. RLD records are read back
from SYSUT1 only if the RLD note 1list
entry contains a multiplicity equal to
or lower than the current multiplicity.
If all RLD records to be read in cannot
fit in the buffer, those in the buffer
are processed. The contents of the RLD
input buffer are "compressed" by scan-

All RLD recorxds
control section

ning the buffer and eliminating any
record that has been completely pro-
cessed. Additional RLD records are
then read into the available space. If

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

sufficient space cannot be made avail-
able, the last record in the buffer is
processed and overwritten until every
RLD record has been read in and pro-
cessed by the relocation routine. An
overwritten record may contain RLD
itewms for a later multiplicity of text;
if it does, it must be read in again
for that multiplicity.

e A control record 1is written out on

SYSLMOD (the contreol information per-
tains to the text that follows it).

The buffer relocation constant is com-—-
puted for all RLDs associated with the
multiplicity of text in the second pass

Section 2: Discussion of Major Divisions 44.1

text buffer. This constant is added to

the address field of an RLD item to
determine if an address constant is
contained in +the second pass text
buffer.

The RLDs are relocated, using either

relative or absolute relocation factors
(refer to "Relocation of Address Con-
stants") . As each RID item is relo-
cated, it is moved to the second pass
RLD output buffer. The RLD output
buffer can hold 30 8-byte RLD items.
If an address constant has been relo-
cated within the second pass text buff-
er and its corresponding RLD item can-
not fit in the RLD output buffer, the
contents of the RLD output buffer must
be written out. However, because the
contents of the text buffer must Dbe
written out first, a "dummy" text reco-—
rd (whose size 1is the same as the
relocated text record) must be written
out to reserve space for the text on
SYSLMOD. The contents of the RLD out-
put buffer are then placed on SYSLMOD.
The dummy record is written out only

for the first overflow of +the RLD
buffer, for a given multiplicity of
text.

When all RIDs pertaining to the text in
the second pass text buffer have been
processed, the text is written out on
SYSLMOD. If a dummy text record was
written, the text in the second pass
text buffer will overwrite it, using
XDAP ("execute direct-access program"),
to maintain the proper output load
module format.

If another multiplicity of text is to
be processed for the same control sec-
tion, the operations described above
are repeated for the new multiplicity.

The RLD items are written out in a
control/RID record after the text to
which they pertain. (The control

information pertains to the next text
record to be placed on SYSLMOD; the
RLDs pertain to the previous text.)

When control sections for all
of the output module have been pro-
cessed (determined via the “high ID"
indicator in the HESD type field and
the "last segment of text" indicator in
the all purpose table), the second pass

segments

processor sets indicators in the last
control/RLD record to mark it as the
end of the module. The control/RID
record is written out on SYSLMOD, and
control is passed to the final
processor.

Note: If the output load module is to

be structured for overlay, the second
pass processor creates a list of rela-

Section 2:

tive track addresses (TTR list) to Dbe
used by program fetch when it loads the
segments into main storage for execu-
tion. The TTR list contains one entry
for each segment in the overlay load
module. Each entry contains the rela-
tive track address of the first record
(control record) of a segment, except
for the first segment, which contains
the relative track address of the first
text record. The second pass processor
also produces a PC-type control section

containing ENTAB entries in each seg-
“ment where the text requires them.
This process is described in the para-

graphs "ENTAB Creation" and "Relocation

of V-Type Address Constants in Over-
lay." The second pass processor also
creates the RLD records required by
program fetch to relocate address con-
stants contained in the ENTABs.
RELOCATION OF ADDRESS CONSTANTS
There are two types of relocatable

address constants:

1. Branch type, such as DC V (X) .
2. Non-branch type, such as DC A (X) .

The value of a branch type or non-branch
type address constant depends ocn a symbol
in the CESD. To adjust an address constant
to its proper value in the ocutput load
module, the linkage editor uses an absolute
or relative relocation factor. The abso-
lute relocation factor 1s the address
assigned by linkage editor to the symbol on
which the value of +the address constant
depends. The relative relocation factor is
the difference between the address assigned
to the symbol by linkage editor and the
address of the symbol in the input module.
The relative relocation factor may be posi-
tive or negative. The absolute and rela-
tive relocation factor of each symbol in
the CESD is computed during address assign-—
ment and is saved in the half ESD (HESD) .

Relocation of Non-Branch Type (A-Type)
Address Constants

A relative relocation factor is used for
a non-branch type address constant if the
symbol on which its value depends is in the
same input module as the control section
that contains the address constant. (The
address constant and the symbol it refers
to were assembled or compiled together, or
were previously processed together by link-
age editor.) An example of relative relo-
cation of non-branch type address constants
is shown in Figure 18. Since the address
of DICK is known, the language translator
places it in the value of the address
constant. DICK is a known value prior to
linkage editor processing (not an external

Discussion of Major Divisions 45

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

reference in the input); therefore, a rela-

tive relocation factor (+1000) is wused to
relocate DICK during linkage editor
processing.

An absolute relocation factor is used

for a non-branch type address constant if
the symbol referred to by the address
constant does mnot have a defined value
within the same input module. (The R
pointer of the RLD item refers +to an
Input Module 1
0000
0999
Input Module 2
0000 [3omN CSECT - Linkage
[Editor
L]
.
*1000
DC A (DHEXT
L]
0999 ®
1000 r57c CSECT
L]
L]
Ld

* Known value of DICK is inserted by
language translator.

Figure 18.

Input Module 1
0000 JOE CSECT
L]
! .
: L]
! EXTRN SAM
i L]
! (]
e *0000
DC A (SAMmT
L]
: .
0500 hd
AN
\ Li(.\kage
/' Editor
Input Module 2
e
0250
SAM CSECT
L]
L]
.
L
1250
* Language translator
inserts zeros because
value of SAM is un-
known.

e Figqure 19.

46

external reference.) An example of abso-

lute relocation of a non-branch type con-
stant is shown in Figure 19. In this
example, the value of SAM is unknown when

input module 1 is processed by the language
translator; therefore, zeros are placed in
the value of the address constant. During
second pass processing, the absolute relo-

cation factor (the linkage-editorxr-assigned
address) is used to relocate the address
constant.

Output Module

0000

0999

1000

JOHN CSECT
L)

e +2000
e 1000
DC A (DieKT

1999 L]

2000 piER

* Relative relocation
factor is +1000,

Non-Branch Type Address Constants - Relative Relocation

Output Module
0000
JOE CSECT
L]
L]
L]
EXTRN SAM
.
.
® $0501
0060
DC A (SAMY
.
.
0500 *
0501 SAM CSECT
[]
)
L]
(]
1501
¥ Actual address of SAM in the output module
(0501) is added to value of address constant.
(Note that the refative relocation factor of
SAM is +251.)

Non-Branch Type Address Constants - Absolute Relocation

Figure 20 shows the use of both a compute the value of the address constant
relative relocation factor and an absolute (PETE+10=310). The R pointer of the RLD
relocation factor in relocating a symbol. item refers to the SD entry for PETE in the
Two input modules are to bke processed by ESD; the P pointer refers to the SD entry
linkage editor. Input module 1 contains a for BOB (the control section that contains
non-branch type address constant whose the address constant).
value depends on the symbol PETE; PETE is
an external reference in the same module. During linkage editor processing, the ER
The language translator has assigned a and SD entries for PETE are merged into one
value of +10 to the address constant. The CESD entry; the R pointers of both RILD
R pointer of the RLD item refers to the ER items in the output module will refer to
entry for PETE in the ESD; this entry that entry. The RLD P pointer for the
contains zeros in the origin and 1length address constant in control section BILL
fields. The P pointer refers to the SD will refer to the SD entry for BILL; the P
entry for the control section that contains pointer for the other address constant will
the address constant. refer to the SD entry for BOB. 1In the
output module, both address constants will

Input module 2 contains two control contain the same value. Since the R point-
sections, BOB and PETE. BOB contains a er of the RLD item in input module 1 refers
non-branch type address constant whose to an ER-type ESD entry in that module, it
value depends on PETE; since PETE has a is marked for absolute relocation; the
defined value (300) in the same module, the absolute relocation factor for PETE (+500)
language translator has used that value to is added to the value (+10) assigned by the

Input Module 1 Output Module
ESD Symbol Type Origin Length ESD Symbol Type Origin Length
Entry 1 |BILL SD 0000 500 Entry 1 [BILL SD 0000 500
No 2 | PETE ER 0000 000 No 2 | PETE SD 0500 [400
3 [JOE ER 0000 000 3 { BOB SD 0900 7300
0000 BILL CSECT 4 LICE LR 0620 e
L] 0000 BILL CSECT
Y o
[[
EXTRN PETE [
[} EXTRN PETE
EXTRN JOE by
e *0010 EXTRN JOE
0490 DC A(PETE+TOJ e ¥ 0510
e * 0000 oeto
0494 DC AUOEY 0490 DC A(PETEHT)
0499 R P FLAG Address + 0620
RLD IL 2 I 1 { I[0490 I 0066
RLD 3 1 0494 | [~ 0494 DC AUOF]
Input Module 2 N Linkage 0499 R P Flag Address
— . ————» RLD [2 T 1 [[0490 |
Symbol Type Origin Length e Editor RLD [4 [1 | [0494”7
1 [BOB SD 0000 300 —
2 |PETE SD 0300 400 0500 PETE CSECT
JOE LD 0420 2
0000 e
BOB CSECT *
0620 JOE [
.)
.
DC.A(;Egggﬁ)' b 0899 -
* Inserted by language
. translator 0900 BOB CSECT
0299 % Determined by linkage :
i i bsolute
Entry JOE editor using al 1194 EXTRN PETE
0300 PETE CSECT relocation factors .
° (+500, +620) .
.
° # Determined by linkage : * ggloﬁ
° editor using relative 1199 DC A (PETE+O)
0420 JOE ° relocation factor (+200)
. R P Flag Address
0699 . RLD [2] 3 [[1194]
R P Flag Address
RLD 27 1 I [0294]

eFigure 20. Non-Branch Type Address Constants - Absolute and Relative Relocaticn

section 2: Discussion of Major Divisions u7

an

language translator.
of the RLD item in input module 2 refers to
SD-type in module 2,
marked for relative relocation;
during
factor for PETE
value (+310) assigned by the language tran-
slator.
address constants is 510.

Relocation of

Since the
ESD entry

relocation the relative
(+200) is

The relocated value

all

added to

non-branch

R pointer

it is
therefore,
relocation
the

for both

type

address constant has been previously relo-
cated (by a language translator or by
linkage editor), it contains the value of a
symbcl being replaced; therefcre, the value
of that symbol must ke subtracted from the
value of the address constant. This proc-
ess is called delinking. In delinking, an
address constant is reduced to the value it
would have contained if it referred to an
external reference 1in the input module.
After delinking, the address constant con-

address constants requires an addition or tains the value required for proper reloca-
subtraction of the relocation factor to or tion, should the replaced symbol appear
from the value of the address constant in later in the input, 1in another control
the text of the input module. (aAddition or section. Delinked address constants are
subtraction is specified in the flag field treated like address constants whose values
of the RLD item for the address constant.) depend on external references. (Absolute
relocation factors are used in relocating
DELINKING NON-BRANCH TYPE ADDRESS CON- them.)
STANTS: A relative relocation factor can-
not bhe used to relocate an A-type address Delinking of an A-type address constant
constant that refers to a symbol in a | is shown in Figure 21. Input load mwmodules
control section being replaced. Since the A and B bkoth contain control section SAM.
Module A Output Module
JOE SD 0 1000 JOE sol* 0 1000
BILL ER 0 "
ESD 0 BILL SD | *1000 800 £D
SAM SD| 1000 750 SAM SD | *1800 750
JOHN LR| 1050 3 JOHN LR | *1850 3
-10
JOE 0 [JOE #1900
1100 11007
DC A (JOBMN-+35D) DC A (JOHN—+50)
DC V (BHD) 700 700 DC V (BHLT 1000
FA i - _ Q000 _ ___ _ _ ___| 800 800 R p Flag Address
1000 2 1 IC 800 o
JOHN 1050] oc 700
p Flag Address 1000 |BiLL £1900
RLD 2 ! 1 800 DC ALIOHNTST)
1 0C 700 | \ 1630 R P Flag Address
~ Linkage §Z 2 [oc [1350 RLD
Module B) Editor 1800 [SAM
SAM SD 0 720 ‘///////
ESD JOHN LR| 70 1 1850 | JOHN
BILL sD| 720 800 | * Values are derived from HESD.
SAM *% 1100 + 800 = 1900
¥ 120 - 70 + 1850 = 1900
Notes:
JOHN 70 ® A relative relocation factor is used to relocate the address constant A(JOHN+50) in
_____________________ 720 control section JOE, because JOE and SAM are in the same module.
BILL
120 ® The address constant A(JJOHN+50) in control section BILL must be delinked because it
DC A(LOHNT50) 1350 was resolved with the symbol JOHN in the replaced control section SAM. The old
value of JOHN must be subtracted from the value of the address constant before it can
R P Flag Address be relocated (using the absolute relocation factor) to the new value of JOHN in the
RLD 2] 3 I 0C I 1350 output load module.
Delink Table
0004 000070]
HESD
| _Type | Absolute Reloc Fact | Seg No |Relative Reloc Fact
00 000000 o1 000000
00 001000 o1 000280
00 001800 01 000800
03 001850 o1 000800
e Figure 21. Example of Delinking

48

During linkage editor processing, the first
occurrence of control section SAM is
accepted, while the second occuxrence is
deleted through automatic control section
replacement.

Control section BILL in module B con-
tains a reference to symbol JOHN in control
section SAM. Since SAM in module B will be
deleted, the address constant A (JOHN+50) in
module B must be delinked so that it may be

properly zresolved with the symbol JOHN in
module A. In delinking, the old value of
JOHN 1is subtracted from the value of the

address constant in BILL (120-70=50) . The
absolute relocation factor for JOHN (1850)
is then added to the delinked value of JOHN
(50+1850=1900) .

DELINKING COMMON CONTROL SECTIONS: Common
control sections (either blank common or
named common) must be "delinked" by linkage
editor. All references to common control
sections are made by means of non-branch
type address constants. If the assigned
address of a common control section in the
input to linkage editor is not =zero, all
such references must be delinked. Delink-
ing is necessary because during 1linkage
editor processing all blank common control
sections are collected into a single con-
trol section and all identically named
common control sections are gathered into

individual control sections; references to
them from different input modules must be
delinked so that they can be properly

relocated with respect to the locations of
the common control sections in the output
module.

Delinking adjusts the value of each
address constant in a common control sec-
tion so that it contains its correct dis-
placement from the control section origin.
The values of such address constants are
then relocated so that they refer to link-
age editor assigned addresses, using abso-
lute relocation factors.

Relocation of Branch Type (V - Type)
Address Constants

Only absolute relocation factors are
used to relocate branch type address con-
stants. Since a displacement is not
allowed in the value of a V-type address
constant, the absolute relocation factor is
inserted in the value field during reloca-
tion. (It is not added to or subtracted
from the value assigned by the language
translator, as described for A-type address
constants.) Because the value of a V-type
address constant is inserted, delinking is
never necessary for such address constants.

Section 2:

Relocation of V-type address constants in
an overlay structure is discussed in the
following paragraph.

RELOCATION OF V-TYPE ADDRESS CCNSTANTS 1IN
OVERLAY: If the output of linkage editor
is to be an overlay load module, a U-byte?
branch type address constant in the path of
the symbol it refers to (but in a different
segment) , or in a different region, will be
relocated 1in a special manner. The value
field of the address constant will contain
the address of an ENTAB entry. The ENTAB
entry will contain the address assigned by
linkage editor to the symbol referred to by
the wvalue of the address constant. An
ENTAB entry is created for a V-type address
constant unless:

1« It is 1in the same segment as the
symbol to which it refers.

2. It refers to a another

region.

symbol in

3. It also appears in a segment higher in
the path.

In case 3, an ENTAB entry already exists
for the V-type address constant. (The
entry was created when it was encountered
in the higher segment.) Any recurrence of
the V-type address constant in a lower
segment is resolved to the existing entry.
Whenever an ENTAB entry is created, it is
noted in an entry list; each item in the
entry list contains the entry number of the

referenced symbol in the HESD, the segment
number of the «calling segment, and the
address assigned to the ENTAB entry by

linkage editor. The ENTAB creation routine
uses the entry list to build ENTAB entries.
(Refer to "ENTAB Creation.")

When the second pass processor begins to
process a segment, the entry list is modi-
fied so that it contains only entries for
segments higher in the path of the current
segment. (In Figure 22, segment 4 is being
processed; the entry for segment 3 is
removed since it is not higher in the path
of u.)

1'All address constants must be four bytes
kecause the high-order byte is used by the
overlay supervisor during execution. The
number of the segment containing the
address constant will be placed in the
high-order byte of any V-type address con-
stant resolved to an ENTAB entry. (The
high-order byte must be zero if it is not
resolved to ENTAB entry.)

Discussion of Major Divisions 49

Form ¥28-6610-2, Page Revised by TNL Y28-2301,

—1

5
9
] =t Entry List
S T 71
s e el HESD
Entry SNeg Address
Number °
1
o Next
2] available
Current 5 |i|:|e; 4
Segment - will bz
entere:
here,

® Figure 22. Entry List Processing

During relocation, each V-type address
constant is examined to determine if an
ENTAB entry must be created for it. The R
pointer of the RLD item for the address
constant 1is used to find the associated
HESD entry; this entry contains the segment
number of the symbol referred to by the
address constant. The relationship of this

segment to the current segment is then
determined, using SEGTA1. Depending on the
relationship in SEGTA1, the address con-

stant is relocated in one of three ways:

1. If the segment that contains the sym-
bol is higher in the path than the

current segment, the call is upward
and the address constant is resolved
directly. (The absolute relocation

factor of the symbol is inserted in
the value of the address constant.)

2. If the current
the path than the

segment is higher in
segment that con-
tains the symbol, the call is down-
ward. The entry list 1is checked to
determine if an ENTAB entry was pre-
viously created for the symbol in this
segment, or in a segment higher in the
path of this segment. If an ENTAB
entry for the symbol exists, its
address (contained in the entry 1list)
is placed in the value field of the
address constant. If no ENTAB entry
exists for the symbol, a new entry is
placed in the entry list?' and an ENTAB
entry will be created by the ENTAB
creation routine. (Refer to "ENTAB
Creation.") The ENTAB entry will con-
tain the address assigned tc the sym-
bol by linkage editor, and the address
of the ENTAB entry will be placed in

'Whenever a line 1is added to the entry
list, an RLD item is created in the ENTAB
RLD buffer so that the address in the ENTAB
entry can be relocated when the segment is
loaded by program fetch for execution.

50

1/731/68

the value of the address constant and
in the entry list item.

3. If neither 'of the two
higher in the path of the other, the
call is either exclusive or across
regions. If the two segments are in
different regions, and no ENTAB entry
already exists for the symbol in the
entry 1list, an ENTAB entry will be
created and an entry is mwade in the
entry 1list; the value field of the
address constant is relocated to the
address of the ENTAB entry, which in
turn contains the relocated address of
the symbol. If the two segments are
in the same region, the call is exclu-
sive. If there is an entry in the
entry list for the symbol, the address
constant is resolved through its ENTAB
entry; if there is no entry for the
symbol in the entry list, the call is
an invalid exclusive call and the
address constant is resolved directly
to the symkol. (This usually leads to
incorrect results during execution of
the module.)

segments is

ENTAB Creation

The ENTAB creation routine uses the
number of RID items in the ENTAR RLD buffer
to determine the number of ENTAB entries to
be created for a given segment. The entry
list 1is scanned for all entries that were
created for the current segment; each of
these entries contains the HESD entry nurb-
er for the corresponding symbol. The value
and segment number of the symbol are
oktained from the HESD and are entered into
the ENTAB entry, along with standard infor-
mation shown in Appendix A.

ENTAB creation is shown in Figure 23.
The V-type address constants referring to
SAM and BILL in segment 1 meet the require-
ments for building ENTAB entries. The ESD
and RLD input to the second pass processor,
and the overlay tree structure are shown in
diagram A. During relocation, entries are
created for SAM and BILL in the entry 1list
(see diagram B) ; each entry contains the
address of the ENTAB entry created for the
address constant.

In segment 1, location 136 of control
section JOE contained a call to control
section SAM before relocation. After relo-
cation, location 136 contains the address
of +the ENTAB entry for SAM, and the high-
order byte of the address constant contains
the segment number of the calling segment.
An ENTAB entry is created, in like manner,
for BILL in segment 1.

Diagram A,

036 | JOE

HESD
L.E Relative 136 | DC V(SAM)* Segment 1
Assigned Relocation
Type Address Seg Constants 236 186 | DCV@ILL)
JOE SD 36 1 200 W%
AM 1
ZILL gg g;g :23 ggg 272 | SAM 272 |BILL
SEGTAB PC 0 1 36
ENTAB PC 236 1 36 Segment 2 Segment 3
DC V(BILL) DC V(JOE)
R p Flag Address
RLD [2 T 1 [1C T 100 1 Structure with V-type address
[s [7 T 1c |15 | Constants.
Input RLDs - Segment 1 * Zero value assigned by the assembler.
Diagram B.
Output RLD Buffer Entry List Entab RLD Buffer
[2] 1 [1C T 13 1| | 2 | 1 [236 [0] T [1D [240 |
L3 | 1 T 1¢ [18] [T3 T 248 ! | [10 | 252 |
RLDs and Entry List after relocation for control section JOE.
Diagram C.
Segment 1 after processing by Second Pass Processor.
JOE
01000236
136 DC V{SAM]
01000248
186 DC V(BHty
236 47FF 0024 _ | 00000272 | 02 | 000000
248 47FF 0012 | 00000272 | 03 | 000000 ENTAB
260 Standard Last ENTAB Entry
Diagram D,
Segment 2 after processing by Second Pass Processor.
272 SAM
02000248
752 | DC V(BHLT
Input RLD Buffer Qutput RLD Buffer ENTAB RLD Buffer Entry List
[[3 1T 2 J1C T 680 } (3 1T 2 T 1€ T 752] [None] =]
* Same as after processing segment 1.
Diagram E.
Segment 3 after Second Pass Processing
BILL
00000036
DC V(IOEY
Input RLD Buffer Output RLD Buffer ENTAB RLD Buffer Entry List
CT [3 Tic &0] (T3 Th¢ T7e] [None 1 [= 1

sFigure 23. ENTAB Creation

Section 2:

* Same as after processing segment |

Discussion of Major Divisions 51

In segment 2, the address constant
referring to BILL does not meet the
requirements for building an ENTAB entry.

(It is not in the path of the segment
containing the symbol.) Therefore, no
ENTAB is created in segment Z. The call

from segment 2 to BILL in segment 3 1is an
exclusive «call. Since a call to the same
s5ymbol appears in a higher segment commron
to 2 and 3 (segment 1) the address constant
may refer +to the ENTAB entry for BILL in
segment 1. (This is determined by scanning
the entry list for the HESD entry corre-
sponding to the symbol BILL.) If a call to
BILL was not contained in a common segment,
the address constant DC V(BILL) in segment
2 would be resolved using the value
assigned by linkage editor to the syrmbol
BILL.

In segment 3, the address constant is an
upward call and is resolved directly.

"Split" Address Constants - Level E

Since each of the two 1K areas of the
second pass text buffer can hold only one
multiplicity o¢f text, an address constant
in a control section containing more than
one multiplicity of text may be "split"
across a buffer boundary. This situation

I is shown 1in Figure 2u4. In case 1, the
address constant 1s split across the bound-
ary between areas 1 and 2 of the second
pass text buffer; this presents no problem,
because the two parts are back-to-back, in
their proper sequence.

Case |
Read A Read B

y y
T T

I ;AD CON | _]
1 | S

Area 1 Area 2
Case 2
Reald B Read A

|

T Y

T T T T T

! CON !) | ADI

1 i 1

Area 1 Area 2
V/ - Read B
Y

i I

I | AD| CON | I#
1

Area 1 Area 2

* If Read B placed text in . 2e half of buffer, portions
of address constant would not be contiguous.

F Text is moved in buffer so that after Read B, portions of
address constant are contiguous.

e Figure 24. Split Address Constants in the

Second Pass Text Buffer

In case 2 however, the two parts ot the
split address constant would not Dpe con-

52

tiguous; read B (from SYSUT1l) would place
the second part in area 1 of the buffer.
To avoid this situation, after read A the
contents ot area 2 are moved to area 1.
Read B then places the next multiplicity of
text 1n area 2; the address constant can
now ke relocated and the text in area 1 can
be completely processed. The RLD cannot be
placed in a control/RLD record until the
text 1in area 2 has been written out on
SYSLMOD. Therefore, the RLD for the split
address constant is saved in the HESD
prefix, an 8-ktyte area that precedes the
half ESD. (The RLD is saved because an RLD
describes a relocatable address constant
and cannot be written out until the text
containing the address constant is availa-
kle.) After the text in area 2 is written
out cn SYSLMOD, the RLD is moved to the
output buffer.

RELCCATICN ROUTINE - LEVEL E

The relocation of address constants is
performed by the relocation routine (Charts
FC, FD, and FE); the routine operates on
the following input data:

¢ The address of an RID record in the RLD
input buffer.

s The address of the next availakle loca-
tion for an RLD record in the RLD input
kuffer.

e The address of the next available entry
in the RLD output cuffer.
constant (BRC)

e The buffer relocation

where:

BRC = starting address of TXT buffer +
relative relocation constant of
current control section -
address assigned to current con-
trol section by linkage editor -
(size of text buffer X current
multiplicity).

The relocaticn routine operates 1in the
following manner:

1. The size of +the RLD record to ke
processed is determined.

2. Each RID item is scanned to determine
if:
a. It describes an address constant

currently in the TXT kbuffer (BRC +
address contained in RLD address
field falls within the boundaries
of TXT buffer).

k. The address constant is either a
valid 2-, 3-, or UY-byte address
constant. (The only valid 2-byte

address constants are pseudo reg-
ister type.)

3. Each address constant whose RLD meets
the above requirements is moved from
the text into a computation area. The
address constant associated with the
RID item 4is then relocated according
to the information in the flag field
of the RLD item (refer to Takle 6).
The relocated address constant is then
placed back into the text.

4. The RLD address field is updated using
the relative relocation factor for the
control section being processed. (The
control section referred to by the P
pointer of the RLD item.)

5. The RLD is moved into the RLD output

buffer if space 1is available. If

space 1is not available, the ccntents
of the RLD output buffer are written
out on SYSLMOD.?1

6. Steps 2 through 5 are repeated until
all RILD items have been scanned in the
RLD record being processed.

7. If there are more RLD records in the
input buffer to be processed, the
address of the next record is deter-
mined and steps 1 through 6 are per-
formed. When there are no more RLD
records to be processed for the cur-
rent multiplicity of text, the reloca-
tion routine determines which RILID
items must remain in the RLD input
buffer for the next text record. It
then adjusts the contents of the input
RLD buffer and determines where the

subsequent RLD items are to ke read
in.
Note: 1In order to minimize the number of
times that RID records are .read from

SYSUT1, RLD records for a control section

are held in the input RLD buffer, when
possible, wuntil all RLD records in the
buffer have been processed (because each
RLD record may pertain to many multi-

plicities of text). An RLD record is

removed from the buffer when:

1. All RLD items in the record have been
processed. (Their associated address
constants have been relocated.)

2. Another RLD record must be read into
the buffer and space is not available.

11f the XDAP indicator is off, a dummy text
record is written out before the contents

of the RLD output buffer are placed on
SYSLMOD. If +the XDAP indicator is on, a
dummy write of the text record is not
required.

Section 2:

(The last record in the Luffer is
overwritten tc provide space for the
incoming record.)

When the relocation routine scans an RLD
record in the input RLD buffer it deter-
mines if +the record contains RLD items
belonging to a later multiplicity of text
in the current control section. If all RID
items in an input RLD record have been
processed, the record is mearked for dele-
tion from the input RLD buffer to make room
for more input RLD records. If the RLID
record contains RLD items pertaining to
text that has not yet been read in from
SYSUT1, the record is marked "in core" in
the record 1length field of the RLD note
list, indicating that it is mnot to be
deleted.

When all records in the input RLD buffer
have been scanned, the relocation routine
determines if more RLD records for the
current multiplicity of text are to be read
in. (The read RLD routine sets an indica-
tor when it encounters such a record bLut
cannot read it into the buffer Lkecause the
buffer is full.) Before such xrecords are
read in, the input RILD buffer is scanned
again to eliminate all records mwarked for
deletion and a "pushup" routine packs the
remaining records (those marked "in core")
sc that they are contiguous from the begin-
ning of the kuffer. The records to be read
in are then placed in the empty porticn of
the buffer; these records are processed in
the same wmanner as those already residing

in the buffer. This process 1is repeated
until all records that may contain RLD
items pertaining +to the current multi-

plicity of text have been scanned and

processed.

If there are no records in the input RLD
buffer that are marked for deletion, and
additional RLD records for the current
multiplicity of text must be read in, a
record is read in so that it overwrites the
last record in the buffer. Each record is
read in, scanned, and processed in this
manner until all RLD records for the cur-
rent multiplicity of text have Leen proc-
essed.

When all RLD records for a given multi-
plicity of text have been processed, the
"pushup" routine eliminates all records
marked for deletion and RLD records for the
next multiplicity of text are read into the
buffer.

To avoid processing the same RLD record
twice for the same multiplicity of text, a
"processed" indicator may be set in the
record 1length field of the RLD note list
when a record is overwritten. When a new
multiplicity of text is to be relocated,
the RLD note list is scanned sequentially

Discussion of Major Divisions 53

Table 6. Relationship of RLD Flag Field to Relocation
[T T e e T T T T T T T T T e T T T T T T e e 1
| Input | | Output |
- ———————— R q Action by |l
| Flag | Type | Performed | Flag | Type |
N B Ot e e L 1
| 0000LLST | Absolute [Absolute relocation factor is | 0000LLST | A-type |
| | |added to value of address con- | | |
! | [stant | | |
R or— o R — oo {
| 0001LLST | Branch |Absolute relocaticn factor is | 0001ILST | V-type |
| | |inserted into value of address | | |
| | | constant | | |
R om— N e e — for oo 1
| 0010LLST |PR-displacement|Absolute relocation factor is | 0010LLST | PR-displacement |
| |value | inserted into value of address | |value
| | (PR type 1) | constant | |
E—— oo o fommmmrmmmm - {
| OOC11LLST |PR-cumulative |PR length from All Purpose | 0011LLST |PR-cumulative |
| |displacement |Table is inserted into value of| |displacement
| | value |address constant | | value]
| | (PR type 2) | | | |
ot — T — e o e 1
| 0100LLST | Relative |Relative relocation factor is | 000QLLST | A-type |
| | |added to value cf address]
| | | constant | |
prmmmmmmmmm - fommmm -- - -—- B B e
1000LLST | Delink {Delink value is subtracted from] O00COLLST | A-type

| |address constant and absolute | |

| |relocation factor is added to | |

| |address constant | |
____________ R Y W |

In delink type, the delink value is added or subtracted according to the

of the sign; the

not relocated.

constant)
storage for execution.

from the first entry. If an entry indi-
cates that the record is "in core" and the
record contains RLD items pertaining to the
new multiplicity of text, it is processed.
However, such a record may be removed from
the buffer so that other records can be
read 1in; such a record is marked
"processed" when the scan has not reached
its entry in the note list. (When the scan
reaches the entry it will be ignored and
the processed indicator will be reset.)

FINAL PROCESSOR - 15K AND 18K LEVEL E

The final processor (Chart GA) performs
"cleanup" functions, and is the last opera-
tion of 1linkage editor processing. The
final processor:

¢ Writes the TTR note list, created by

the second pass processor, on SYSLMOD
if the output load module is to be used

54

(It may have keen delinked.)

[

|

|

I

|

| * If S (sign) in LLST is 1, subtraction is performed, rather than addition.
| O

|

|

{

| flag field is set to one (1000LLST for an A-type constant, 1001LLST for a
|

I

opposite

absolute relocation factor is added to or subtracted from the
address constant according to the indicated sign.
¢ If an RID item refers to an undefined symbol, the associated address

constant is
The high-order bit of the RLD item
V-type

and no relocation will be performred when the module is loaded into main

in overlay. The TTR list ccntains the
relative track address of the first
record of each segment of the overlay
load module. It 1is wused Ly program

fetch to find the segments when it
loads them into main storage for execu-
tion.

¢ Places each entry in the proper format
for the partitioned data set directory,
modifies it if there are alias symbols,
and issues a STOW macro instructiont
fcr the merber name and each alias.

e Checks attributes (reusable and
reentrant). If +the attributes have
1The STOW macro instruction is not issued

if there was no valid input, if there were
no ESDs, 1if nothing was written out on
SYSLMOD, or if the run was terminated by a
severity 4 error.

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

more restrictive, a message describing
the change in attributes is printed
out. (For example, the input module

was specified as "reusable" and is now

"not reusable.™)

e Passes control to the diagnostic direc-

tory print routine to print out a
directory of logged errors.
e Releases main storage space that was

allocated to linkage editor.

e Checks for any final options and passes
control to the module map routine if a
module map or cross reference table was
requested.

e If the module has been marked "not
executable, " an error message is
printed out. Control is then returned
to the caller, or, if a NAME card
terminated SYSLIN input for the 1load
module being processed, to the initial
processor.

ERROR LOGGING

Whenever an error condition (other than
input/output errors) is detected during
linkage editor processing, the error log-
ging routine (Chart GB) sets an indicator
in an error logging map and prints out a
coded diagnostic message. During final
processing, the diagnostic directory print
routine scans the error logging map. When
an indicator is found "on" in the map, this
routine refers to an associated list (via a

Error Logging Map

T
| ! | |
1

table of pointers) which is used to build a
diagnostic message.

An example of error logging in level
E is given in Figure 25. Each entry in the
list contains a length indicator and a
pointer to a phrase to be assembled into
the message. (Phrases are stored to save
main storage space; complete messages would
require additional space due to repetition
of identical phrases.) The diagnostic
directory 1is then printed out, one or two
lines to a message.

Note:

All error messages produced by the link-
age editor are identified by a message IO
having the format:

IEWDMMS

where:

IEW - identifies the message as a linkage

editor error message.

D - contains a zero.
MM - is the message number.
S - 1s the severity code.

The module in which an error message
occurred is identified by the message numb-
er (MM) as shown in Table 7.

) 16 63
\\
N~ e
Table \
I ‘ Entry 48]
re
L/
List
T T T T T T
1 | | o [l
BRI RN
7/ ! \
_ ’,// // \\ \\‘~h_.__-——~-——‘\
T T —_— P’ S~ RN
Phrases ¥ ‘

} Phrase P]

Message y

Phrase P

| Phrase R ‘7 Phrase M

] Phrase J]

* This pointer is determined by subtracting the
hit number from the length of the error
oy wina map (64 - 16 = 48).

Figure 25.

Building Error Messages (Level E)

Section 2:

Discussion of Major Divisions 55

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

INPUT/OUTPUT ERROR HANDLING

Wwhen the control program detects an
input/output error during linkage editor
processing or when the second pass proces-
sor finds an error following execution of

an XDAP macro instruction, the SYNAD rou-
tine (chart GD) is entered for an analysis
of the error and for production of a

message describing the error.

Error analysis depends on whether BSAM,
BPAM or XDAP was in use at the time of the
1/0 error. Thus, the SYNAD routine has
three entry points. The proper SYNAD entry
point is assembled into the SYNAD field of
the DCBs for the SYSLMOD, SYSLIN, SYSUT1,
and SYSPRINT data sets. The SYNAD field
for the SYSLIB DCB is filled by the include
processor when the DCB 1is opened. (For
SYSLIB the entry point corresponds to BSAM
or BPAM.)

Upon entry from BPAM or XDAP, the SYNAD
routine issues the SYNADAF macro instruc-
tion for error analysis and message con-
struction. The routine moves the SYNAD-
generated message into the TEXT I/0 table
area, inserts the proper ID into the mes-
sage, and then prints the completed mes-
sage. The SYNAD routine then either
returns control to continue linkage editor
processing (in the case of an input failure
from SYSLMOD during module map processing)
or passes control to the final processor to
terminate the edit without output.

When the SYNAD routine is entered from
BSAM, a check is made to determine whether
the error occurred while writing to SYSs-
PRINT. If this is the case, the macro
instruction is not issued; instead, control
is immediately returned to the caller. If
the error did not occur while writing to
SYSPRINT, SYNAD operation is the same as
for BPAM and XDAP.

56

e Table 7. Error Message -- Module Cross
Reference Table
r T~ =TT T T T T T T 1
| MMS | Module Where Error Occurred]
p—mt -4
| 012 |IEWLESCD i
022	IEWLESDC
033	IEWLCENT
043	IEWLCENT
053	IEWLCENT
{ 063	IEWLCENT
073	IEWLCENT
083	IEWLCENT
093	IEWLCENT [
102	IEWLCEND
113	IEWLCENT {
123	IEWLEADA
132	IEWLEADA
143	IEWLEOUT
152	IEWLCENS
161	IEWLCENS
172	IEWLCENS i
182	IEWLCENS
{ 193	IEWLEADA i
201	IEWLEADA
{ 212	IEWLEINP
{ 222	IEWLCESD,IEWLEINP, IENLETXR
232	IEWLCESD,IEWLEINP,IEWLETXR
{ 241	IEWLCESD
254	IEWLCESD,IEWLEADA
264	IEWLCESD
272	IEWLCINC
284	IEWLCSCN,IEWLEINT
	294
302	IEWLCSCN
314	IEWLCSCN
328	IEWLCSCN
332	IEWLCSCN
382 [IEWLCINC	
354	IEWLETXR
364	IEWLETXR
374	IEWLETXR
382	IEWLETXR
394	IEWLCFNL
404	IEWLCFNL
412	IEWLCFNL
421	IEWLCFNL i
432 {IEWLCINC	
444	IEWLESCD
{ 454	IEWLESCD
461	IEWLEADA i
] 472	IEWLCENT
484	IEWLEINP [
492	IEWLCSCN
502	IEWLCFNL i
512	IEWLCINC i
522	IEWLCINC
{ 532	IEWLCINC
543	IEWLCFNL
	630
1 A1 J

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

MODULE MAP AND CROSS—-REFERENCE TABLE

If the MAP option 1is specified, the
final processor passes control to the
module map processor (Chart GC). The
module map processor requests main storage
space, opens SYSLMOD for input, and reads
in ESD records. The ESD records for the
current segment are gathered and sorted by
address. The module map is then printed
out; the map 1lists, in ascending order
according to their assigned origins, all
control sections contained in the output
module and the external symbols within the
control sections. CcControl sections in an
overlay output module are grouped by seg-
ment and are listed in ascending order of
their assigned addresses within the
segment.

Section 2:

If the XREF option 1is specified, the
module map processor also reads back the
RLD records from SYSLMOD and builds the
cross-reference table. The cross-reference
table includes a module map and a list of
all references within a given segment that
refer across control section boundaries.
Each entry in the list contains the address
of the reference, the symbol to which it
refers, and the name of the control section
in which the symbol is defined. For over-
lay programs, each item in the 1ist also
contains the number of the segment in which
the symbol is defined.

Discussion of Major Divisions 56.1

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

LEVEL E —-- FLOWCHARTS

MICROFICHE DIRECTORY

The microfiche directory is designed to help you find named areas of code in the
program listing, which is contained on microfiche cards at your installation. Microfiche
cards are filed in alphameric order by okject module name. If you wish to locate a
control section, entry point, table, or routine on microfiche, find the name in columrn
one and note the associated object module namwe. Ycu can then find the item on
microfiche, via the object module name; for example, routine ALLOO1 is on card IEWLEINT.
The other columns provide a description of the item, its flowchart ID (if applicable),
its overlay segment number, and a synopsis of its function (or its contents, if a table) .

f T T T -T T T ———==
Name	Description	Object	CSECT	Overlay	Chart]	Synopsis
		Module Name	Name	Segment	ID	
		(Microfiche]	
		Name) I	(15K, 18K)			
b 1 : 1 t bt — {						
Alias Table	Table	IEWLCENT	TEWLCENT	9,6	—=	ALIAS symbols from CESD
—_— 4 4] 1 I 4 4						
T T T T 4 T Al						
ALLOO1	Allocation	IEWLEINT	IEWLEINT	3,2	BA	Allocate main storage
[Routine I	! I I I				
F + 1 1 t " -4						
All Purpose	Table	IEWNLEAPT	TEWLEAPT] 1,1	—-	{Major communications area	
Table	I I					
- ¥ 1 I : 4 + 1
|Calls List |Table | IEWLETXR | IEWLERAT| 6,3 |-- |Entries for V-type ADCONS |
[N i } 4 1 i }
r T T L) T ¥] _‘i
|CESD | Table | IEWLCESD |IEWLCESD{12,7 |-- | ESD control information |
L 4 } 4 } L |
r L T 1] 1 T {
|Delink |Table | IEWLEINP | IEWLEINP| 4,3 |-- |Entries for symbols being |
|Table | |] | | | deleted |
b t 1 : : ¢ : -
|Downward |Table | IEWLCENS | IEWLCENS]| 9,6 |—- |Downward calls from V-type|
|Calls List | | | | | | ADCONS |
: t : } } : + 4
| ENTER |Enter | IEWLCESD | IEWICESD| 12,7 |CF |Enter ESD item in CESD |
| |Routine | | | | |
- 1 1 4 : " {
|Entry List |Table | IEWLESCD | TEWLESCD| 12,7 |- |Control information for |
| I | I I I |V-type ADCONS |
F 1 1 1 { : t .
|ENTAB RLD |Table | IEWLESCD | IEWLESCD| 12,7 |- |ENTAB records built here |
|Buf fer | I I | | I |
F 1 1 1 t P .
JFREELINE | Freeline | IEWLCESD | IEWLCESD| 12,7 |CF | Select next available line|
| |routine | | | | |in CESD |
- + : 1 t S 1
|Half ESD |Table | IEWLEOUT | IEWLEOUT| 9,6 |-- |ESD control information |
[4 } i i R }
1 3 1 T 1 1 T | "
|High ID | Table | IEWLEOUT |IEWLEOUT|9,6 |-= |High ID for each segment |
|Table | I | | | | I
b + + : t + : i
| IEWLCAD1 |Entry Point|IEWLEADA | LEWLEADA|9,6 IDB |Make CESD entries for |
| | I] | | | ENTABS |
b + ' t + ', ¢ 1
| IEWLCAUT |Entry Point|IEWLCINC |TEWLCINC|8,U |cp |Automatic library call |
| | | | | | | processing |
b : : I t 1 : 1
| IEWLCBTP |CSECT | IEWLCBTP |IEWLCBTP| 10,8 |GA |Print diagnostic messages |
L L AL L L L 1

(Continued)

Level E —— Flowcharts 57

Form ¥Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68
Microfiche Directory (Continued)
T T 2 I - -1
| Name |Descr1pt10n| Object | CSECT | Overlay |[Chart]| Synopsis
| | |Module Name| Name | Segment | ID | |
| | | Microfiche| | | | |
| | | Name) | | (15K, 18K) | [[
b= t 4 1 t =t =
!IEWLCDCN |Entry Point| IEWLCRCG | IEWLCRCG| 7,3 |CG |Removes CESD item from |
i | | | | | |library chain |
- 1 % 1 t f——t 1
|IEWLCDLK |Entry Point| IEWLEINP | IEWLEMDL| 4,3 |-- {Builds Delink Table |
b t -+ 1 ——+ e ¢ - 4
| IENLCEND |CSECT | IEWLCEND | IEWLCEND| 6,3 |[CK |END Statement Processing |
— } 4 4 USRI, | [}] *
T T Bl T v T
| IEW LCENS {CSECT | IEWLCENS | IEWLCENS| 9, 6 |IDB |ENTAB size determination |
i 1 1 4 IR i }
r T T T T T T - "
| TENLCENT |CSECT | IEWLCENT | IEWLCENT|9,6 |DC,DD| ENTRY statement processing]|
I + 1 + —4—- + : .
| LENLCEOD |Entry Point|IEWLEINP | IEWLEINP| 4,3 |-- |EOD for SYSLIB; also |
| | | | | | Jentered when ECM record |
| | | | | | |read from load module |
- + + e — —4-———} - |
| IEWLCESD JCSECT | IEWLCESD |IEWLCESD| 12,7 |CE,CF| ESD record processing |
] | | I ! Icc | !
— t ¢ 4 + = = - |
| IEWLCFAB |Entry Point|IEWLCFNL | IEWLCFNL]| 10,8 |-— | Termination processing |
1L 1 4 S (U (- 1 | <|
T T T T T T
| TEWLCFNL |CSECT | IEWLCFNL |IEWLCFNL|1O 8 1GA |Final processing |
[} } +
- 1 1 I T T - '!
| TEWLCINC |CSECT | IEWLCINC |IEWLCINC|8 4 jco | Include processing [
1 } 1 4 | 1
r T L | o T "
| IEWLCLDB |CSECT | IEWLCLDB |IENLCLDB|2 1 f—- | SYSLIB DCB |
1 1 | 4 I
LD T T B [+-—_- T - "
| IEWLCMAP |CSECT | IEWLCMAP |IEWLCMAP|11 8 | GC |Module map processing |
[. | } _+__ | 1 — {
T T b T T T
| IEALCPTH |Entry Point| IEWLCRCG | IEWLCRCG} 7,3 |CG |Find common segment in |
| | | | ! | |overlay path |
k- 1 . o 1 - + %]
{IE WLCRCG | CSECT | IEWLCRCG |IEWLCRLG|7 3 |-= |Replace/change processing |
[l i 1 |
r B T + - +_’— T - '|
| IEWLCSCN | CSECT | IEWLCSCN | I WLCSLN|8 5 |CL,CM|Control statement scan |
— 1 - = e } } 4
|IENLCSDB |Symbol | IENLEAPT |IEWLEAPT|1 1 1-- | SYSLIN DCB I
b : + 1 P S =
| IENLCSNX |Entry Point|IEWLCFNL |IEWLCFNL|10,8 |-- | Synchronous file error |
| | | | | | lexit |
1 [1 __+_ —_ { | .‘
] T T B T T .
| IENLCSYM |CSECT | IEWLCSYM |IEWLCSYM|7,3 |CD | SYM processing |
- 1 4 — : t -1
| IENLEADA |CSECT | IEWLEADA | IEWLEADA| 9,6 | DA |Address assignment pro-]
| | | | | | | cessing |
L 4 } ____,I, _______ | i I } .l
1 T 1 T T T
| IEWLEAPT | CSECT | LIEWLEAPT | IEWLEAPT| 1,1 |-- [|All purpose Table |
1 I iy 1] 4
r T 1 R L T T "
| TEWLEEON |Entry Point|IEWLEINP |1EWLEINP|& 3 |-- |ECD for SYSPRINT |
1 }] i 1
T T 1 _—_+ ________ T T '|
| IEWLEINP |CSECT | IENLEINP |ILWLEINP|H 3 |ca | Input processing]
i 4 1 4
r T T ¥ “+ _+ - ‘|
| IEWLEINT |CSECT | IEWLEINT |IEWLEINT|3,2 | BA | Initial processing |
1 1 i 4 1]l
r T T T T T T "
| IEWLELOG | CSECT | IEWLELOG |IEWLELOG|2 1 jcB |Error logging |
I 1 t 1 -t _ =
| IEWLEMDI |CSECT | IEWLEINP |IEWLEMDI|4 3 1-- |Module input |
1 4 _+ _— { 1 | ____4|
L} T 1 T T
| IEALEOPT | CSECT | IEWLEOPT |IEWLEOPT|3 2 |BA |Attributes and ogptions |
| | | I | | | processing |
L 1 1 N 1 L L g |

(Continued)

Form Y28-6610-2, Page Revised by TNL ¥28-2301,

Microfiche Directory (Continued)

1731768

) T T T T T T 1
Name	Description	Object	CSECT	Overlay	Chart	Synopsis
		Module Name	Name	Segment	ID	
		Microfiche				
		Name)		(15K, 18K)		
t t t 1 = — -1						
IENLECUT	CSECT	IEWLEOUT	ZIEWLEOUT	9,6	EA	Intermediate outrut pro-
	!	I I	cessing			
% + 1 .l } : ¢ -4						
IENLERAT	CSECT	IEWLETXR	IEWLERAT	6,3	CH,CI	TXT and RLD processing
I	! I	ICg				
— 1 + I $: $ -						
ITEWLERDM JEntry Point	IEWLEINP	IEWLEINP	U4, 3 1-- JRead routine			
L 4 I 4 1 4 4						
r I T L 1 T T {						
IEWLEROU	CSECT	IEWLEROU	TEWLERQU	1,1	—-	Linkage editor E entry [
I I					point	
’ + : = t — =						
IEWLESCD	CSECT	IEWLESCD	IEWLESCD	12,7	FA,FB	Second pass processing
L I 4 } 4] [N						
r L] 1 T) L] T —_4						
LABEL	Label	IEWLCESD	IEWILCESD	12,7	CF	Renumber ID field of LABEL
	Routine]	item		
- 1 1 : ¢ : : -4
| LIBOP |Library | IEWLCINC | IEWLCINC| 8, 4 [co |Opens libraries |
| | Open_ | | | | | I
| |[Routine | I | | I I
b 1 : 1 + L — {
| NXTLINE |Next Line |IEWLCESD | TEWLCESD| 12,7 |CE | Set pointer to next line |
| |Routine | | | | |in CESD |
— 1 4 1 f 1 —
|Relocatable |Table | IEWLEADA | IEWLEADA| 9,6 |—— |Relocation constants |
[Constant | I | | | | !
|Table | | I I ! I [
b = : : t — i
| RENUMBER | Renumber | IEWLCESD |IEWLCESD[12,7 ICF |Translate ESD ID to CESD |
| |Routine | | | | | ID |
——- t = + + e t -1
|Renumbering| Table | TEWLCESD |TEWLCESD| 12,7 |-= |ESD - CESD item resolution]
|Table | | I I I | !
b + t : I 1
| RLDBUF |RLD Buffer |IEWLETXR |IEWLERAT|6,3 |CH,CI|Write RIDs to SYSUT1 |
| |Routine | I I | I |
1 L } i +] } __{
v ¥ 1 T T T T
|RLD Note | Table | IEWLETXR |TEWLERAT| 6,3 |- | Description, location of |
|List | | | | | |RLDs on SYSUT1 |
b + : 1 : L -
| Scatter | Table | IEWLEOUT |TEWLEOUT|9,6 |-- | Ordered symbol addresses |
Table | | | | ! | |
b { t + t e =
| SCDCUTLD | Split ADCON|IEWLESCD |IEWLESCD|12,7 |JFC |Relocate split ADCCNs |
I |Routine | | [I I I
F ¥ + I t = ! -
| SCDRELOC |Relocation |IEWLESCD |IEWLESCD| 12,7 | FC,FD|Relocate address constants|
| |Routine | | | |FE | |
% t .L . + — =
| SEGLGTH | Table | IEWLEADA | IEWLEADA]9,6 |-- | Segment lengths |
| Table | | I I [I |
I t : b t ¢ b =
| SEGTAB | Table | IEWLEOUT |IEWLEOUT|9,6 |- | Segment relationships |
L L 1 L 1 L L _1
{Continued)
Level E —— Flowcharts 58.1

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Microfiche Directory (Continued)

r T T T T T 5 1
| Name |Description| Object | CSECT | Overlay |Chart| Synopsis |
| | |Module Name| Name | Segment | ID | |
i | | Microfichej | | | |
[| | Name) | | (15K, 18K) | | |
L 41 { | } 1 ! 1
r T i T T T T T 1
| SYSLMOD | Symbol | IEWLEAPT | IEWLEAPT| 1,1 |-- | SYSLMOD DCB {
L 1] 4 } N L
LB T 1 T T T T _—"
| SYSPRINT | Symbol | IEWLEAPT |IEWLEAPT|1,1 |-- | SYSPRINT DCB |
+ 4 I 4] |
- 1 T T 1 T T —{
| SYSUT1 | Symbol | IEWLEAPT | IEWLEAPT| 1,1 |—— | SYSUT1 DCB |
i]] { J i IR
L T T T L) 1 1 —‘{
| Text I/0 |Table | TEWLETXR | IEWLERAT| 6,3 |-— | Description of text on |
| Table | | | | | | SYSUT1 |
t = + + f : : -1
|Text Note |Table | IEWLETXR | TEWLERAT|6,3 |- | Location of text on SYSUT1|
|List | | I | | | |
! 1 i 4 —d— 4 } _{
r T T T T T
| Translation|Table | IEWLEOUT | IEWLEOUT|9,6 |-- | Pointers to Scatter Table |
| Table | | | | | |entries |
—_— 4 N } [} Il] ___{
T T T L T T . .
| TTR List | Table | IEWLETXR | ITEWLERAT|6,3 |-- |Address of first text in |
] | | | | | |each segment |
-— f t = : t t !
| TXTBUF | TXT Buffer |IEWLETXR | IEWLERAT|}6,3 |CH,CJ|Write TXT to SYSUT1]
| |Routine |] | | |
L 1 L 1 L 1 L 4

58.2

Chart AA. Major Divisions

Form Y¥28-6610-2,

HRHEHATHHNN NN,
x CONTROL *
x PROGRAM *

*

R T

Page Revised by TNI, Y28-2301,

INITITAL PROUCESSING

Pr—

KB IR RN K
FIEWLEINT BA¥
Lt e T
* INITIAL *
* PROCESSOR *

*

*
R]

|
|

INPUT PROCESSING

v
NN HC FH WK KK RNk
*IEWLEINP CAx
R e e el L T R
* INPUT *
* PROCESSOR *
* *
AR

INTERMEDIATE
PROCESS ING

v
XHEK KD TR R KA HXHRK
ITEWLEADA DA
Fm K e W N K N K
* ADDRESS *
* ASSIGNMENT *
* PROCESSOR *
R e ST 4

Pru—

HHEKREZH KRR RH N
IEWLEOUT EA
XK e — N W K
* INTERMEDIATE %
* OUTPUT *
* PROCESSOR *
R e e TS

SCCOND PASS
PROCESSING

v
HRHHHETH RN H AL KN

*TEWLESCD Fax
B e e Sk T L Y
* SECOND *
* PASS *

¥ PROCCESSOR *
RS S S T T T TR

FINAL
PROCESSING

v
XEEEKGIHRAE AR XNER

YEWLCFNL GA
KoK K KN R R KR
* FINAL *

* PROCESSOR *
* *

F KKK KNI R A R

|

v
R RHTZH RN
* CONTROL *
* PROGRAM *
*

*
KKK XNN

Level E

Flowcharts

1731768

58.3

e Chart BA.

*
*
*

FROM FINAL
PROCESSOR

HEEHE] HRRRKR AR

TEWLENAM

LRSS S S RS XS 2

3*
*
*

Initial Processor (IEWLEINT)

FROM CONTROL
PROGRAM

T T R
* *
* TEWLEINT *

*

EEE L E LT S LR RS 22

P —

HHHNHTTH NN K H R
#*SAVE REGISTERS #
* 3-12 AND

* PLACE ADDRESS
* OF APT IN

* REGISTER 2 *
FH RN F R KR

|
i

* %k %k

¥ INTOL
LR R R e R 2 X X X 2 8 2T Cc3 * g 33 6 C 4 % WK MR H A
¥PLACE STANDARD * o *e * PLACE PASSED *
* DDNAMES IN * NO «* PARAMETER *. YES # DONAMES IN *
* DCBS OF ALL #<—mmmm—ee— i, LIST e¥——————— 5% DC3S OF ALL *
* DATA SETS * %o PASSED % * DATA SETS *
* #* *q ¥ * *
EEEE I E RS ELEERE L 2 ¥* o - ¥ EEETE S EES SR EEE R
| * |
| |
|
|
i<
INT20 v
WD B RAH
* OPEN *
* SYSLIN *
* SYSUT1 *
* SYSPRINT *
* 3*
He 3R A
|
|
|
|
v
EEE S e R 2 L 22 E 2 28
*IEWLEOPT *

Fm e W — R W —H -
* ATTRIBUTES *
* AND OPTIONS *
* PROCESSOR *
EEE S AL RS EE SR S X RS

|

>
INT21 v
WHE JHHERE AR
3* *
* OPEN *

* SYSLMOD *
* *

¥* *
EE R R S kL L b3

ALLLOO1 v
HAEKKGIHERERHXARR
*ALOC *

Hm o e K Ko Hm Hm Hm K
* ALLOCATION *
* ROUTINE *
* *
F I H R W H KRR

|
|
|
|

v
WK T H RN WA N
TO *
* INPUT *
*

PROCESSOR *
EER RS R R RS T LT

Flowcharts

Level E

59

eChart CA.

e r] RN RN
* £0F ON *
" 4YSLIN DCB *
* *

R KKK W NN R

TEWLEESN v
HRXKRD L RKAKR X AR KX
* SET AUTOMATIC *
X LXBRARY CALL *
INCICATOR ON *
* *
%
*

*
A T T TR S

i
i
|
|

v
HHEAKE] HH KN RN

* SET END OF *
* INPUT *
* INDICATOR *
* ON *
% *
R]

|
|
1
|
v
-ty
F1 *
o
. {NPUT
*, RECEIVED
*

*. o
. ek
* NG
| wexx
| xea x
70 L->% G2 *
FINAL * *
FROCESSOR* % %%

ARG LR XA E
* EOF ON *
* 5YSLIB DCB *

*

*
FR R e

*
*

MODUL Z
PROCESSGR

60

INF10

INPL12

{RUM TINITIAL
PRUCESS0R

FARKEADREEAREARK
* *
* TLWLL INP *
¥ *

N K KW KKK RN KR H

|
{
* B2 *->]
* * H
e |

v
KRGIEREANNR

* READ *
¥ A RECORD

*

[EETEE T 20T

L

*
NUO

»
|
|
{

v
x

Je *a
- ¥ 1S * .
«* AUTOMATIC %,

¥WLIBRARY CALL o¥-——————=—D>¥*.
*

Ko INDICATDR*
e SET %
e ok

x NO

v
Ty

*E R

Input Processor (IEW

YES

LEINP)

HERMEC SHA R HRXAR

* *
I

v
RN T KRR KR

TEWLCAUT Cp
B K K R — W R
#* AUTOMATIC -
* LIBRARY CALL %
#* PRUOCESSUR *

AN NN RN

*INPZ 70 cox P
o Nk KN KKK * *
* ————> ¥ LUAD o> ¥ 32 *
* MODULE * x *
* PROCIESSOR * -
LRSS RS S S S L E 20
INP13
FEEERDIREREER R AN
% * *TEWLEMDL cyx kxR
CUNTROL KoK KKK N KKK * *
STATEMENT >* 0BJECT Homm>% B2 X
* MODULE # * «
* PROCESSUR * LR
EAKERKRE KRN KK HN
v
EAKRACZHERRXEXHAR
IEWLCSCN cL
KK A KR A KKk
* CONTROL *
* STATEMENT *
* SCANNER *
FAKEAEKEEAKER S REAR
l
|
I
v
- ¥
re
* P
o NAME NU * *
*. STATEMENT R——mm> % B2 *
- . * *
*a A
L
*
|
i
v
HEKEKGDRE AR
* SE
* AUTOMATIC *
<——% LIBRARY CALL *
* TNDICATOR DN *
* *
FEAAAERAEARRK KR KR
TEWLCEDD o*.
H2 *. HEERKHIHEAEERREAN
.* *a *ITEWLCINC co* xnx
% ANY *. YES Ho KK K KR N K * *
. MORE . —> INCLUDE e .
*oINCLUDES % * PRUCESSOR * * x
*. o P

KRR JAREHERERRR
* I3 *

13
*

R e e e T

FROM OPEN DURING
CONCATENATION

R E K AL KRR KK KK
*
x UCB EXIF *
K
HE KRR KKK KKK

|

i

v
CRRHREFE R NN

* Tewe EX(T *
A H— e U X K

* LPEN £XIT *
* SET INDICATGR #
* AND HRETURN *

HEEERHH KRR EH RN NX

P

HEXRCSFRRE AR E
* *
x RETURN *
* »
R KRN K AR

TO OPEN

¢ Chart CB.

FROM INPUT
PROCESSOR

HEEKAL R REERHRX
*

Object Module Processor (IEWLEMDI)

A2 * FEERHAZH KRR KRR
* *

*
* TEWLEMDI
*

R HRHTERANE KR NX

|
|
v

INP130
HEEERD] RERERKR KKK
*

*
* CLEAR *
* TEXT *
* INDICATOR %
* *
* *

e T T]

*****EI*X********
IEWLERAT CH
PSS SR sl
* RLD AND TXT %
* PROCESSOR X

*
e e e T

D

INP160 .
D2

WERE
SYM RECORDS
* 4 RECEIVED %
* ¥
*a ok
* NO

v
LR
* *

* SET *

e TEXT
* INDICATOR *
#*

*
R

e
*CC *
L>x G3 *
* *
* X
¥ o*e
F1 * F2 *o
o * 1S *,
. END * B
L-—>¥% o RECORD o ¥m—————— D>, RECEIVED
. *2 INDICATOR & %
*. o *. ON o
Ko o Xo ¥
* NO * YES
|
i
1 i
v v
B e HHEREHG2EHERHHREEN
TEWLELOG Go *TEWLCSYM CD*
B e B e
*UNRCCOGNIZABLE * * sYM
* INPUT-NOT * * PURGE *

* OBJECT MODULE *
R KRR X KRR

v
XX AX
xCC *
* G3x

* *
F KKK EN

INP70 ¥,
F3

1

*o
ESD *e YES
RECORD o Homm———

¥

o

Ko ¥
*

KRR DT RN KK R AK

IEWLCSYM CD
f R

SYM *
* PURGE *

*
W NN R NN NN
]
|
|
|

EAARKEFHEREREERRR
* *
* CLEAR *
SYM *

* INDICATOR *
* *
*

EEERRREAEKHXRERR

*.
«% ENTRY ¥

NP140
ARHERCHEFFERIXRES
* *
* SET ESD
——> % INDICATOR
* ON

*
*
*
*
*

*
XKW RI NIRRT

v
HEEEEDH KRR EEE N
TEWLCESD CE
B L T
* ESD *
* PROCESSOR *
* *

P e

HRHEET L HARREER TN
* LOAD GR4 *

POINT *. YES * WITH CONTROL *
INDICATOR a¥——— #SECTION LENGTH *
*. ON ¥ | # FROM END *
e o | * RECORD *
Ky o v I NN R R R
#* NO E WA A
i * * I >
| * F4 i * *
i * * <—% F4 *
l EE 2 X2 * *
v] NO** %%
o¥a INPBO a¥e
G3 G4 *.
- ¥ - o ¥
<% ABSOLUTE *. NO «* SYMBOLIC
*a ENTRY e Fe— > %, ENTRY
*. POINT o% %o POINT
* ¥
. ¥ ¥, o ¥
* YES * YES
%
| |
| |
| |
v v

e kRSS2 L 2 L)
* SET ABSULUTE %
* ENTRY POINT %
* INDICATOR %
* IN Ae Pe Ta %
* *
* *

R e s 22 TR AR

|
|

v

HRERK JIHARER KR NNRH
* STORE

* ASSEMBLED *
* ADDRESS_IN *
* Ae Po To *
* *
* *

I KRNI R A

v
EER
* Fa4 *
*

R XK

R e
* SET SYMBOLIC
* ENTRY POINT
* TNOICATUOR

* IN Aa Pe Te
*
*

*ok K K K K

RN NN

v

HEXRK JOEHXERE KX KN
* SET ENTRY
* POINT

* INDICATOR
* IN Ae Pe Te
*
*

AR K KK K

KN R K

v
WKL H N R
* *
* STORE *
* SYMBOL *
* IN Ae Pa To ¥
* *
*

RN

. * *TEWLELOG GB
- ¥ CONTROL *. NO e R K W K o Ko W W
* e >%. STATEMENT o ¥———————m >% CONTINUATION —*—————-q
CONTINUATION® *EXPCTD BUT NOT * v
* * * RECEIVED * Xk H K
KK N K XCC *
¥ G3%
* %
*
INPZ2 v ke INP150
REEREGZ2HN RN R RN RS B3 £ KK TGH WK N XK
*LOAD PARAMETER * * *o . x *
REGISTERS AND * SYM *. YES % TEST *. YES * LODAD GR& *
* SET IN MODULE * RLCCORD e¥——————>%, INDICATOR o%———————D>% WITH BYTE ¥
* INDICATOR IN % o *. ON o * COUNT *
¥ Ae Pe Ta * * *
RN W TR R AN EE TS S SRS RS S 23

v
ERHRKCSEEH RN XX RN

TEWLCSYM CcoD
P e b
* SAVE *
* SYM »

* ECORD
R e R e

*
*

v
R H K
*CC ¥
* G3%

* *

INPSO ¥

o
o*

CONTAINS
*o. LENGTH

>

<—

EHEAXKCT R R R HEENK
SET NO LENGTH
* RECEIVED

* INDICATOR

* IN Ae Pe T
*
*

* koK kK K

KA NR
i
1<
|
v

HERRKHSE RS AR LXK

TEWLCEND CK

B e T

* END *

* PROCESSOR *

*

*
HHA XK NN KRR

v
HAEHN JSHRE R NAER

TEWLERAT CH
W U e W e W W — R
* END CARD *
* PURGE *

* *
AW KK KKK

v
AEXERE
*CC *
* G3%

Flowcharts - Level E

61

Chart CC.

FRUOM INPUT
PROCESSOR

L SR T T TR T

»
* INP270 *
* *

FE NN

Load Module Processor (INP270)

v
INP270 ¥, ¥,
31 *. B2 *. ERAENBIHRNAEANERR
- * - *IEWLCSYM CD*
- % SYM IS TEST *. YES binbatat ik bk Sl e b Sl
*o RECGRD INDICATOR o ¥ 5 ¥ *
ON o * SYM PURGE *
*. o *o o * *
. Fa o# HRRT XK AR R NN
* NO * NO
| l { EA L2
> * *
, >% g3 *
*
v 222
INP281 o¥e
HHEHHCDHEERER KRN HRARACTHRARSERRRE R I T T
¥ *e * * *LDAD NUM3ER OF * * *
ot ESD *e YES * SET ESD * * BYTES OF CESD * *LLDAD ESD 1D OF *
*e RECORD a¥——m———— > INDICATOR B > % INFORMATION
. * ON * ®* INTO GENCRAL
*g * * * REGISTER 4
Ha ok L T T T 2 T NN KK NN
* NO
v
INP290 ohe
D1 *, HEERED2 AR LK E X R D IEHIRRE RN HEHHHDLHAEHE R RN
% * *_OAD NUMBER OF * * LLOAD STARTING * *TEWLERAT CH-CJ*
-® RLD YES * UYTES OF RLD * *ADDRESS OF RLD * ot b ind Sk b Rk Al
LR REICORD B> ¥ INFORMATION ¥—mmmmee > INFORMATION ¥———————> % PROCESS *
. * INTO GENERAL * * INTO GENERAL % * *
*, ¥ * REGISTER 4 * * REGISTER 6 * * INFORMATION *
Ha o ¥ L e s LR R T R I e e
* NO
i I
' |
<
v
ke
E1l *, ERERRED NN RN NN FRERKRE A HEE NN e 4
- - * LOAD ASSIGNED * * LOA * * *
- ¥ CCwW/RLD * * ADDRESS DF * * BYTE COUNT * * LODAD ID INTO *
>% FOLLOWING TXT #m—m > % GF TXT S Sl GENERAL. *

*o RECORD
*

® INTO GENERAL * * INTO GENERAL

- - * * REGISTER 5 *
*o -k * REGISTER 3 * * REGISTER & * * *
Ko o ¥ R e s I s ERENKERRRHEEKRE TR N
* NO
I
v
INP305 ko
F1 *. PP
¥ EE 23 HTEWLERAT CH=Cu*
o® RLD *. YES % * *a H kR kKN KRN
¥ RECCRD ke % 3 ¥ By (mmmme PROCESS *
*, o * »* * * TEXT *
. * P * INFORMATION ¥
> I B N s sat]
T
* *
* F3 *
» *
XN
1INP320 o
(€13 *a
¥ *.o XX «* IS *a4
. SCATTER *e YES * * « YES o* ESD WRITE #*.
*a RECORD o Fmm——3>% G3 * ————————> INDICATOR -
- - ¥ * * * o PROCESSOR . * .
*x . o * o
P Ko a
* NO * YES
I |
i |
| v
i N ——— o
v * » v
ek, * K5 % PLEY
M1 * i EREFAHDEERERERARR M * H4 o
wr *. i *IEWLCEND CK* RN s *
.k LAST *e YES V D T Ty 1S TEST
*a RECORD ¥ S END W e —— gy INDICATOR
* * PROCESSOR * v * ON
* M HXRXATO INPUT *. ¥
SRR SR S R L TSI 2] *CA *PROCESSOR *a *
* H2¥ * YES
* x
l * l
I I
i v
v INP111 ¥
HREAEJLHHNRRHR XK ERRRE DR R R AR AN HAREHJFERKRRNR RN J4 *.
TEWLELCG G3 *ILWLCSYM CD* * * - 1s *o
L e b Ty L i Tt TE SR Y * SET SYM * INPUT *
* UNRECONIZABLE #———y i SAVE R S et RECEIVE * A LOAD
* INPUT LOAD * * ESD * * B1T * MODULE
* MDDULE * * CARD * * * - .
FEAEEEHRHARRRER SR v R S R TR S HEREAER XX RNRE RN *a o*
E K *
* *
* G3 %
* * v
* ke N
* *
* K5 *
* *
Ty

62

ERAHRCSH RN XN AR
* LOAD *
ADDRESS DOF CESD
—> % INFORMATION *
* INTC GENERAL *
* REGISTER 6 *
PRI T T T e

|
|
|

v
F AR RDS N RN KN

TEWLCESD CE
Ho W N e Wem m W K K
* PROCESS *
* € *

* INFORMATION *
PSR S-S

P
* *
—>% GF *

* *

K
EE 2R AR R RS ST RS 2]
* *
READ TEXT *
RECORD INTD *
* TEXT BUFFER
*
*

*
22 T T TR Y

v
T
* *

* SET *
Qo —— % TEXT *
* INDICATOR ON %
* *
R SRS 2R S22 S 2R 2

Py
NO * *
———>% K5 *

* *

EERE

HRRXK JSHKE R KKK L RN
ITEWLCSYM CO
L e et ot S St 2

*
SYM PURGE *

*
e
X R

* *
* K5 *->
* *

AR !

v
NN N NN
* *
* RETURN *
* *
EX 3 T2 E S22 22

TO INPUT
PROCESSOR

e Chart CD.

FROM LOAD OR
OBJECT MODULE
PRCCESSCR

HHRFADERFHKRRRR
* *
* IEWLCSYM *
*

I KR WIS

|

v

SYMO0O100 <%,
B2

o
NO % OBJECT
* o MODULE
*

T
|
i
|
SYM00200 v

5YM00600 -
K KN KRN RN ce
* *

*INITIALIZE FOR *
WRITE FROM LOAD¥
MODULLT BUFFER
* *

LR LSS ST S RS LR 2

v
BHHRHDD XX KWW NN RH
* *
INITIALIZE FOR #
WRITE FROM 0BJ.
* MODULE SUFFER *
* *

HEERHERREREKE KRR
|

> |

|
SYM0O0300 \
AR R DR NN KN RR

* WRITE *
AND
® CHECK *

EEEL SR L RS R L L

SYM Processor (IEWLCSYM)

SYM00900
HHHKRC TR KR K AN RN
#*

*

NO * MOVE SYM/ESD

———————>#RECORD TO TEXT
* BUFFER

% K K X

¥*
ER R 2 R 2R 2 kL L L kS

|

v
EE 22 S EX T S R 2T

3* *
* INCREMENT *
* COUNT *
3* 3*
* *
* *

EZ 2T 2SR R EE 2

*

I<

SYM00500 }

v

W% K DKW R K
* *
* RETURN *
* *

EES SR TSR TS 3 L3

JO LOAD GR

03JECT MODULE
PROCESSCR

Flowcharts

Level E

63

sChart CE. ESD Processor (IEWLCESD)

FROM INPUT
PROCESSOR

HHERALHE RN RN
* *
* TEWLCESD *
* *

L R

|
|
|
v

FEFERD [HRERERE RN HRERRGBIHRHERERR NN

* INITIALIZEq * *
SAVE ESDIDs ND. * SET SEGMENT *
* OF ESD ITEMS, * * NUMBER *
*¥ESD TYPE, ADDR * * TO ONE *
OF CESD AND RNT¥ « *
EE RS RS2 S 22 IEZ SRS SRS RSS2 S |
l
L L E l I
*CE % [i I
* 1 x> | [
* * | | |
L v I oves
LGDAQ o ¥ «¥a [ESD1A ¥,
Cl * g RERERCDHR AR RN RN c3 * g Cca o N5 RN NN
% s * * o* 15 - O IS *o * *
% ESD TYPE *. NO *INSERT CURRENT * «* AUTOMATIC * v «% ESD TYPE * o LERD BYTES *
*a P3EUDO S%SEGMENT NUMBER *————mmm >*LIBRARY CALL ————>%. EXTERNAL >*10, 11, AND 12 *
K.REGISTER o% * IN ESD (IN * *.INDICATOR,. * * «REFERENCE o % * GF ESD ITEM %
*J(PR) o% * BYTE 12) * *e ON o% *(ER) o% * *
Ko o HEAREEREERER AT RN * Fe o I e
* YES >
|
|
A v
ESD2 *
ARERAD2HE RN ER RN
-k *TEWLCRCC * 1s
<% REPLACE/ *. YES NN MR . THI
*o CHANGE * SCAN REPLACE/ * AN UBJECT
*. SYMBOLS <% * CHANGE CHAIN * MODULE
. o * x .
L LR R RS A R LR R SRR S *e o
® ND { *
} I %
| |
< |
v |
£G03 ¥ v
1 *. HEHED RN AN XH RN HEHARESHEREF R AKX
- IS * o FNXTL INE * * ~ *
«% ESD TYPE *. YES et e bk S L * ZERO _THE *
o PRIVATE o »>* SET POINTER * SUBTYPE *
*. CODE ¥ * TG NEXT LINE v * FLELD *
*.(PC) o * OF CESD x Pre e * *
¥a ¥ NI NN XK *CF * KKK AWK KK KK
* NO * 5 ax
] * %
| *
|
!
v
ot
k1 *a
* .
- 15
*. ESD TYPE
*. UL . v
. o *xxien
Ko o¥ XCE *
* NO * Epw
] *
i *
|
1
v
.t
1 * . LS SRSV R E L LRSS
¥ is * . * *
«* EED TYPE %4 YES * CHANGE TYPE *
*oLABEL DEFINT—o¥———————— >¥TO LR INDICATC *
*a ON ¥ ATHAT 1T WAS AN *
*a(LD) o * LD *
*. o ¥ HEEEEREEA R AN RN RU
* NO |
R |
*CE ¥ | |
*oHL a—>| |
* * <
LT |
504 v
R KK L R NN N
* *
* SEARCH THE *
* CESO FUG

FoR A *
¥MATCHING SYMBOL*
*

AR TN AN

T i
*CE * i
* g1 x>
* ® 1< \
WA i { NO
508 ¥ ESD6 oA
a1 *. J2 *a
o* IS * . <% DOES *a
<% THIS THE *. NO ¥ ESD *.
¥o IND OF THE o ¥—————— >*. MATCH CESD %
*o CESD . *. SYMBOL %
* ¥ . .
Ha e * . uw
* YES * YES
| |
1 1
v v
* %% **NON-RESOLUT TON *HHXXRESOLUT ION
*CF *PROCESSING *CG *POCESSING
* AL * * 1%
* * * *
* *

64

s Chart CF.

ESD Processor (IEWLCESD)

(Continued)

M ESMZ23 ESD23A o ¥
R A] IR A2 - T L T T T
#FREEL INE * ¥ IS * o *L_ABEL * * kX%
L T ot 3 o ¥ £SD *e YES W W — RN 3% * *
—>% SELECT NEXT #———————n >#%e TYPE LABEL o%¥———————>% RENUMBER ID #———D>% g2 *
[* AVATLABLE * A #* o REFERENCE o ¥ A * FIELD OF * * *
| % LINE IN CESD * | #o(LR) o | ®* LABEL ITEM * LR
| KR MR KN KRN A RN i He o ¥ | R R R E R EHAR KRR
* * * NO *
** * * * *
*CF x #CF % *#CF %
x AL¥ * A2% | * A3
KR 3 H] LR 2
v
oy EsDe1l o¥e
B2 %o 83 *e AR KK SRR KK KRR R
o ¥ Is * o ¥ I5 *o * INDICATE THAT ¥
«% ESD TYPE #*. YES <% AUTOMATIC ¥, YES * SD IS FRCOM *
*o A SECTION e¥mmm—m =3 % o L IBRARY CALL o#————————D>% A LIBRARY *
DEFINITIONG A %, INDICATOR¥ * (AUTCLIB *
HHAH *.(SD) o* | *q ON &% * INPUT) *
* * X, o ¥ i *e ok e
* D2 * * NO * * NO |
* ¥*] * * | i
* 3K | *CF * I |
| * B3* | g
| 33 ¥ ¥ * I«
v i
o¥ e ESD22 i
R C] KK R RR c2 *o HRRRRCIHRRARRNR KR
* MARK 'COMMON * - 1s * o ¥* INDICATE THAT
* ITEM AS A * YES o# ESD TYPE #. NO * ESD IS SD OR %
*¥DELETE ITEM AND¥<L—~———————i, COMMON o HF——— * PC—-SCT ESD *
* SET COMMON * * o (cm) o ¥ HWRITE INDICATOR*
* INDICATOR * *o o* * IN AP *
R I e T k. o ¥ v} R N
* R i
LR * #* ¥ |
* * * E1 * *#CF * I
* D2 ¥——q 3* * * D2 *—>
* * | * KRR * *
EX X3 | EX T X3 v
v odte ¥,
HEBHRDORERANH R AN D3 *a D4 * o
¥*ENTER * ¥ * o . ¥ 1853 * g LR
Foh— KR —H— RN —H— NO % Is *e YES o ¥ LENGTH *e YL S #* *
r——>% ENTER THE H Ly {————H, SD LENGTH o ¥ ————D¥% ID SAVED . Dz *
* ITEM IN THE * *o ZERQ ¥ %o INDICATCR S ¥ *
R R * CESD * *. o ¥ *o ON o % KR
* * L e e T L He oH He o
* E1 ¥ * * * NO
* * WA * |
*EEE *¥CF * *CF * |
* E2 *¥—> * D2* |
* * NI R {
L2 22 | i
PN v v
E1l ¥ e HHRHHEDH R RN E R AT EE T R E R R R
o ¥ * o ¥RENUMBER * *¥FZAVE NO LENGTH *
ot *o NO W K e K3 * LINE ADDRESS> *
¥ INDICATOR o ¥——— *TRANSLATE ESDID#* * AND SET ID *
* o ON ¥ * 70O CESDID IN * *#SAVED INDICATOR¥
¥ o o3 *RENUM3ERING T3L* * IN APT *
*o o¥ EREENHKEHE KRR A® KWK KNI WA KK KK
YES |
| i KR
| L * *
| —>%* D2 *
] ¥* #*
v %%
ESD29 N
F2 *a HERERE IR LK ERRFHR ER N R
¥ 1S5 * o * CLEAR COMMON * #TEWLCOLK *
«% COMMON *o YES * INDICATOR * H—h—H— KR — =W N — ¥
#4 INDICATOR o*———————>% PREPARE FOR #——————— >% BUILD ENTRY *
*o ON . * DEL INKING * * FOR CESD LINL *
a o * * * IN DELINK TBL *
*o o¥ HEEH KR RR RN HEERHE O
* NO {
| |
|
SE J
v
ESD30 o¥o ESD30AO
G2 *a HARERGAREAHHHHRHK
.® ANY *q * GO TO NEXT *
¥ MORE *o YES * ESD ITEM ¥
* o INPUT ESD ¥ >* —SAVE ESD F—————— 8]
*e ITEMS o% * TYPE * Y
. o ¥ # ¥ (2223
Ko o P *CE *
* NO * C1*
* %
I .
|
|
v
I 2 W RN R
* *
* RETURN *
* *
FH KRR K KKK KRR
Flowcharts - Level E

65

e Chart CG. ESD Processor (IEWLCESD) (Continued)
EE 223 *
*CG * * %
* AL* *CF
* * * E2%
* E2 22 23
| RESOLUTION PROCESSING ?
| YES
ESD6A v ESD12A . oo
HERAEA]L NN RN N * FE T VST T T AS *,
* * .* 1S * * CLEAR SUBTYPE * o s *.
* SAVE TYPE * .+ EsD TYPE “%. NO o ER *. YES * DELETE BIT * . CESD *o
* OF MATCHING ¥ D% DELETE/ o —>%. UNMARKED aMm———————>% IN CESD LINE *————————D>%¥, UNMARKED OR o
* CESD ENTRY * *. REPLACE % *., (ESD) % * (MAKE 1T A * *e NEVER %
* * *. ¥ * REPLACE) '.CALL *
RS2 2L RS2 223 22) t * . oW *!Il*ii**lll**&** LI
3w * NO #* NO
i * * R | |
I * p2 * * *
* B3 %>
Py * *
| ey
ESD17A N v
I!iiia]ll}i*illil B83 * -aii*aa&ﬁ&ak***}& 32 e LR R R e
*[DCESD o IS *o *TEWLCDCN * *
-0 o* *. NO o %, YES o dudan - * MARK *
#*DETERMINE LY * *.TYPE DELETE/ r—— *TYPE A LIBRARY. >* REMOVE * * CESD TYPE *
*NO. OF CURRENT # *. REPLACE o% . MEMBER #*LIBRARY MEMBER * * MATCHED *
* CESD LINE * *. . * FROM CHAIN * * *
XM MK XN TN N *e o ¥ v WA WK XKW XKW P2 TR TR TR
* YES Axwx
| S I
* F5 # 1
* * v v
L e 2] E2 22 23 EX L 23
v *CF *CF *
ko * A2% * E2x
- * * *
15 - ¥ LA L 24 * *
CESD *. YES o * *
a TYPE . >%. > K4 *
DELETE % *. * *
. P
H e ¥ * .
NO * YES
v v
P EEEER
* 4CF #
ESD7 * F5 % * ALN
AAKAKKRRERRA AR RRKER RN SR ERRRRRRE X * * % FARRKDAER KRN RN ExxxRDSEHERRERERRR
* ! * ErEw * * UPDATE LENGTH * *TEWLCPTH
* IS ESD 1S CESD GO * * OF CESD * kKN * rox
* A PR A PR | TO * * ENTRY e FIN *
* i * * TO GREATER * * CDMMON PATH *
* LENGTH * * EGM
* * NI RN NN l*&lﬂ*i**i***&ﬂll
* YES NO l CEJ1 * A
* NO YES CEJ1 *
* NO ND | cGJ1 *
* YES YES | COMTINUE * v
* * E2 2 23
* | * | o0 *CF *
* i * ot «*. (TYPE IS * E2%
PrrTTTTree ¥ * . CD) * %
*
{
I YES
ESD18 a¥ ot ESD15A&
D RN F3 * g L322t RS SRt Ss s
* * «* IS *DEL CHN *
* SET MATCH * o* ESD NO o ESD *. YES e S P
- * INDICATOR *e—y *. TYPE o % >x, TYPE ———————>% CREATE A LINE *
*. GREATER ¥ * « { A *CHAINED TO LINE®*
*e * - i | *FGR MATCHNG SYM*
. o¥* e) v i LT e T
* YES A EEERR *RER i
| *CF * * * i FE T2
* A3w * F5 * *CF %
* * * » —>% D2 #
* rxnn * *
L2 2
v ESD14
HRHTEG] HHA KRN RN e
* * * SET CESD *
* SET CESD * NO * LENGTH EQUAL ¥
* LENGTH EQUAL * —————D % >* TO GREATER OF *
* TO ESD LENGTH * * CESD AND E3D *
* * * ITEMS *
EE TS ST S S S22 2] 222222 SRR S R 2]
i
|
e g | *CE *
| * |
* |
v v
ESD10 v ESD12 ESD1S ke ESD14A .%o
EE 22 PR LRSS L 2] H4 * g -
* SET CESD * «%® IS *. o* 1S * o* *o
* ALYGNMENT * YES o S *o % CESD *o NO «* DVERLAY
* EQUAL TGO *—— —>%*a ITEM FOR A - ¥ *a TYPE AN LY INDICATOR
* HIGHEST OF % *. CONTROL % *o LR %o ON I
- * CESD AND ESD ¥ i *aCARD o *a *o APT o
M HAE KKK KRR v Ke o o% *, v *e o
1 EXEEE * NO e *"NO
4 *CF % | L2223 * * FEz 23
H * En* { * ® * F5 * *CF *
H * * y4 ®—> —>% A2 *
* * * P *
v * R a2 2]
*. N v
*, J3 ¥, !li*lJalll**l&iiﬁ i&&ﬂ*JSi&***i****
1s *o .* IS *. *DLDEF *IEWLCPTH
CESD . ESD *4 NO ln—&iil’&&u ni*»&***& J
TYPE *o TYPE CMysSDs o¥——— * DOUBLE LABEL * * * L
CHAINED <% -] * DEFINITION * * COMMDN PATH %
. *o * ERROR * * SEGMENT *
- * g, v EE S E RS 2222222 22 2 I W W W W N N
* YES * YES ERR
® * PrTey i
* A2 ¥ * * |
* * —>% F5 * v
| | E2 223 * * R 2 2]
i v N HCF *
v ESD17 e * A2%
HRERRC L RN R K3 * I ETCS 2SS TR TR * *
* SET CESD * rExn S *e * TEWLCDLK * *
* POINTER * * * ND o CESD *. YES i L L L S
* FTO *CHAINED * * 53 Rk, TYPE ot —> % DELINK i |
* TO*' LINE * * *o A * CESD * v
* * * R | * LINE * EX 2223
N R AR R | ERE RS 2222222 S *CF ®
P * Azk
* * * %
* K4 * *
v # *
66 EE T EEER
* *
* Al %
* *

KR

Chart CH.

TXT and RLD Processor (IEWLERAT)

o¥e *
A2 *o A3 Tl XHHAN ALK KRR NN XK ADE T XX HN
Q] KRR o o* IS *, *BUFRLD * *BUFTXT *
* . END *. YES ot THIS *. NO Fm e e — W W W N K W W N R — W — W
* IEWLERAT Fmm D ¥ CARD . ——>%, A LOAD o ¥m————— 2% PURGE RLD #————————>% PURGE TEXT *
* *e PURGE ¥ #*e¢ MODULE - * BUFFER * * BUFFER *
AT * * *o ¥ * * * *
FROM OBJECT *e o e e s T HEERHANERRHRILRRR
OR LOAD MODULE * YES
PROCESSGR
>
v
*, HERRDSHRRRHARHRER
AN %4 TXT *
o ¥rmre———y * RETURN *
v * *
R I e
*Cy * TO OBJECT OR
* A% LOAD MODULE
* % PROCESSOR
*
kA H
HCH *
* C2% v
* ¥ HRRRHCD NN KRN KN
* * SET COUNTERS *
* FOR NEXT *
——— > R AND P *
* POINTERS *
* *
T
v
ok,
D2 *, HRERKDTHNIRRHIRRK
¥ IS P ¥, * SET DELETE *
«* POINTER *., YES * INDICATOR *
*oMARKED DELETE ¢ #———————=>% —-RLD ITEM *
%4 IN RNT ¥ * MUST NOT 3E *
*q . * PROCESSED *
*e ok P
* NO
<
v
a*a
E2 *q P e L
o¥ 1S P ¥, *BUFRLO *
«* POINTER *. NO Fm W W W Y N N
*a SAME AS - * WRT OUT RLDS ¥
*4PREVIOUS % *FOR PREV UN-— *
. - *LESS IT WAS 1ST¥*
®e ok * *
* YES #* RLD OF MODULE ¥
NN RRER
Kessecssssscccssccccvenncce
v
ok,
F2 *. EEAAREIHRERERHRRNR
¥ * g *IEWLCDLK *
o 1s %, YES B s =
a DEL INKING »¥— > DEL INK *
*oNECESSARY o % * RODUTINE *
. o * *
*y ok P s T E
* NO
<
i
v
L
* *
* RENUMBER *
* R AND P *
* POINTERS *
* *
B e
|
v
¥, e¥a
H2 *o H3 *o FHE R NG HE KRR
kR N £ *e (A TYPE) o% IS R ¥, * MARK FLAG *
* «% FLAG DF * NO «% POINTER * FIELD OF RLD %
%* H2 ¥————>*,RLD MARKED ASe#——————=D>%, A PSEUDD- ——————>3% AS A PSEUDO ¥
* * *o BRANCH ¥ #eREGISTER * REGISTLER *
* X %o TYPE o% * TYPE *
*. o R
* YES
(v TYPE) 1

v
¥
J2

-
o * o
* OVERLAY
INDICATOR ¥
SET o

*a

v
N D RN MWK EN
#PLACE ENTRY IN
* CALLS LIST-IF
*_IST OVERFLOWS
* SEND ERROR
* MSG-TERMINATE
P T I e R s

EEE R R R

<

R W YO KRR N RN
* MARK FLAG *
* FIELD OF RLD *

>* FOR RELATIVE *
* RELOCATION %

*

*
e s s

<
v o*.
R K R T AW W NN EN K4 * g ER 222432 S22 22 2 2
FIND MULT OF % o* *a * UPDAT *
* ADDRESS FIELD * o 1s %o YES * COUNTERS FOR *
>% OF RLD-SAVE * >*LCONTINUATION o #——mmmmm—D>% FLAG— *
* IF LOWER THAN * %o BIT IN W% # ADDRESS FIELD *
*PREVIOUS MULT. * *RLD SET* * *
EZ 22T TR S S LS] ¥, o ¥ EEZ SRS 2 S
* NO
v v
EE 22 23 R X
*CI * * *
* A2 * H2 *
* * * *
* E2 2 22

Flowcharts -

Level E

67

Chart CI. TXT and RLD Processor (IEWLERAT) (Ccntinued)

XN
#C1 *
* A2* e¥a ¥, o,
* * Az * o A3 * A4 *, KRR AS KRR N NN
* -3 15 * o -t Is * o ok * o *BUFRLD
l ¥ DELETE *a NO - ¥ THIS A *s YES -¥ END *o. YES W K XNk
- —>%, INDICATOR XS % I_OAD - H——— >H . OF o F———>% PURGE RLD
*q SET o *. MODULE % *o INPUT ¥ * BUFFER
o o %o ¥ #* . o *
L. %o o *a o HHEERHEERE RN RHRR
* YES # NO * NO |
{ %% | | kR |
| * * | L #CH *
| * 33 *->| —>% C2 *
H * # 1 * *]
| [2233 v ER 22 |
v - ¥, {
HAEREHG R HER X NN B3 *, R e A s A v
*THE PRECEEDING * ¥ WILL * o ¥PJUFRLD * K W[5 H NN KR
* RLD ITEMS ARE * «* RLD ITEMS %, NO K R— kRN kKWt *
* NOT TO BE * *. FIT IN RLD o ¥—————— 5% PURGE RLD * * RETURN
* WRITTEN OUT * *o BUFFER ¥ * BUFFER * *
* * * o ¥ * * I IR T T
L e S E R Y . g 2 R T R Y A TA LOAD
* YES MODULE
I | PROCESSOR
|
| v
| R
| * *
v * B3 %
R Tk E T * #*
® X%
* MOVE RLD *
* TTEMS INTO *
* RI_D BUFFER *
#* *
e T e
|
{
|
i
>
v
- ¥o
D3 *a
- ARE *o
o ® ALl RL.D * 4 NO
¥ITEMS IN INPUT ¥ ———————q
* . RECORD ¥ v
1 e PRUC o ¥ I3 2223
* - ¥ HCH *
*OYES * C2%
I - ®
| *
|
l
i
1
\
IR e R S S R RS SR
® ®
* RE TURN *
S *

68

eSS R e 2 R RS S
TU OBJECT
LR LOAD
MODUL.E
PRrROCE

*
*
*
*
*

*
*

*
*
*

Chart CJ. TXT and RLD Processor (IEWLERAT)
R KR
*CJ *
* A2 ¥ -¥a
* *® A2 *a A3 * o
* -t 1s L) o 1S5 *q
] . TXT RCD *4 NO . TXT 1D *e NO
b S>*¥MARKED DELETE/ ¢ ¥————————D>%, AN SD OR
¥o REPLACE o% * o PC *
*IN RNTa¥ * o o
Fae ¥ He ¥
* YES * YES

v
HERHZ DK AWK AR N
* *
* RETURN *
* *
AEEEEHERERERE AR
TO OBJECT

OR LOAD

MODULE
PROCESSOR

YES % *

1s
CONTIGUITY
*o INDICATOR W *
%o SET %
¥a o
* NO

-* 1S *
*o, CONTIGUITY .

* o SATISFIED ¥
*, ¥

*o

o*

* YES

I

l v

v
HRERFDBIERERR RS R
* CALCULATE *
* WHERE THIS *
* TXT RECORD *
* SHOULD APPEAR *
* IN TXT BUFFER *
FH KRR

P —

HEKEHCIHERRHERERR
* *

RENUMBER 1D ¥
* DETERMINE *
¥ MULTIPLICITY *
*
*

*
P e e

¥
D3 L
-% 15 *o
.* THIS *o

LY A LOAD - F————

*o MODULE ¥
. - *
*, o

* NO

¥
E3 *e
¥ 15 *o
o THIS *a
#eTHE FIRST TXTe
#RECORD QF %
*¥MODULE « %

YES

> ¥

(Continued)

KRR REALHHEERKKERER
TEWLELOG GB
B e)
INVALID ID *
* ON TXT CARD ¥

* *
L RS et

XN KD 4R KWW H
*TXTIOT *
EEE T e D L Tl et St
>* PLACE ENTRY %
* IN TEXT 1/0 *

* TABLE
e A S T S S 23

EEXRREGRRK AR
*TXTIOT
s S e
PLACE ENTRY ¥
* IN TEXT 1/0 %

*
*

* TABLE *
R e

|

F3 x,
«% IS ¥
% CURRENT *. YES
*. TEXT ID *
*o NEW o
*

G3 *a
.¥ *o
NO o * Is *
————————%* MULTIPLICITY &%
*e NEW ¥
*g ¥

%y o F
* YES

PR T TR T Ry N
* RESET *
* CONTIGUITY *
>* INDICATOR *
* (FOR CURRENT *
* *

*

R T T e g

P13

v
HEAERH TR R AT RE NN
* BUFTXT *
H W K K— R — W — KW — N
#* PURGE TEXT OF %
* OLD ID OR OLD %
* MULTIPLICITY *
P e T T]

FRRER YRR R XN
SPLIT TEXT *
RECORD AND *
MOVE FIRST

PART INTO *
TXT BUFFER *
KN AW RN

*
*
*
*
*
*

v
N DR NN KR TN
*

* PURGE TXT BFR %*-—
*(ONLY 2ND PART *
0F TXT REMAINS)
TR W N W RN NN

R NI R IR RN NN
* *

* MOVE TEXT *
—>%* INTO TEXT
* BUFFER *

*——

* *
E e e]

KRR REERE

*

> #* RETURN *

*

RN R HA K
TO 0BJECT
MODULE
PROCESSOR

PR INA T IR R N

*
————— ——>% RETURN
»*

*
*
*

AN NN

TO INPJUT
PROCESSOR

HREHRDS RN R AR

*BUFTXT

*

e et ol S

———————— >* PURGE TxT
* BUFFER
*

*
*
*

L e

v
ARERESHER R LXK

*
* RETURN
*

*
*
*

ARERRRERE AR R KR

PROCESSOR

Flowcharts

Level E

69

e Chart CK.

EHHEAL RRRNSENAR
* *®
* TEWLCEND *
* *

W HKEERE KKK TR

|
|
I

R e e N
* INITIALIZE

* RENUMBERING
¥TABLE AND CESD
*BASE REGISTERS
*

PEET]

HHHAERE R TN ERR

|
v
w¥e
C1 *a
¥ 1s *g
YES 4% THE ENTRY #.
o= ¥ AaPOINT BIT ON %
*e IN APT ¥
*

V NO <% Is *o
===% o ENTRY TYPE

*«ABSOLUTE
*e

*o. %

P —

ENDO3
M NN] XK NN N

* RENUMBER THE *

* 1D FIELD *

* FOR ABSOLUTE *

* ADDRESS *

*

*

*
R T

v
LR S
* *
* SET ENTRY *
* POINT BIT ON ¥
* IN APT *

*
*

*
L T

END1

*. RECORD
1

¥
* YES

——— >

HEKRRHD X RRARARERN
TEWLELOG GB
LR RS Tl Bt T B Bt T
NO LENGTH *
* CGIVEN FOR *
CONTROL SECTION
PEFSES P

|

|

i<

|
FND1A v
LT T TNFE T2 TR
* PUT LENGTH *
INTO CESD ENTRY
FOR THE CONTROL
* SECTION *
* *
PP ————

P —

K] NN KK
* *

* TURN OFF *
* *MO LENGTH® *
* INDICATCR *
* IN APT *
LA A2 S RL S S22

|

{

|

70 -

* *
* A3 ¥
* *

R

END Processor (IEWLCEND)

3]
* A3 *
-

"

LND2 v

WM ATH RN AR AR NN
*CLEAR REPLACE/ ¥
* CHANGE BITS *
* AND SYMBOL *
* COUNT *
* *
LRI R T T S

v
AEKEAGIH AR SRR NN
* SETUP LOGP
* INDEX TO
* REFER TO
* RENUMBERING
*
*

kK k%

TABLE
R R e]

|
|
|

«%* RNT TYPE
* DELETE OR
- CHAIN

*

* o

END1O v
EARRRDIH R X RN RN
*

*
* ZERO QUT *
* RENUMBERING #
* TABLE ENTRY *
* *
* *

L s T

END10BH -
E

¥ *,
NO o

*

1s
l———%*, RNT LQOP
*a DONE
*o ot
*

*
1
|
v

EZA R RS TR

*
YES

* *
* RETURN *
* *
HEEEAR RN R NRH

TO INPUT
PRAOCESSOR

ENC7
EAEEHASHR RN R RRE
* *

* REFER TO

*
>* CESD USING *
* RNT ID VALUE *
* *

*

R S R 2

¥
35 *
O 15 *o
»*

*. DELETE ¥

NO .%x" CESD %,

L]
SAVE CESD ENTRY
* NUMBER AS *
* FIRST OF THE * L
* CHAIN *

» *
LR e T T Y

*oENTRY'S TYPE %
*e CHAIN T
*

END&
XK DS KN N KRN AN
* *

* BLANK GUT #
* CESD *
» ENTRY *
* *
* *

R s s e T

v
[T

¥ INCREMENT *
* ENTRIES *
* DELETED *
* COUNT *
* *
PP F T

ke
Fs *o
. Is *a
YES «% THIS THE o
~¥eFIRST DELETED %
*o ENTRY ¥
%o o
¥e o

*
NG

*
|
|
|

>

|

v

A G R R NN NN

#USING INDEX TC *

#* LLAST CNTRY OF %

#* CESD CHAIN- %

PUT NEW ENTRY *

#NUMBER IN CESD *

N

[P —

ENDO6
ER T T ey T s)
#* PUT ENTRY *
* NUMBER QF *
DELETED CESD *
HFENTRY IN APT ASH*
LAST OF CHAIN *
LR T

!
|

€5

% CESD .Y
*eENTRY(S TYPE o%——™

¢ Chart CL.

FROM INPUT
PROCESSOR

L2 YR TR RS
* *
* YEWLCSCN *
*

*
L T2 T

SCN900 v
HHREHB KRR EN RN
*¥SAVE COLUMN 72 *
* —~SET POINTER *
* P1 TO

* COLUMN 1 *

* *
LR R T T R T s T R

K C] IR KN
READB CN
Fm K K KWK H— W

*READ OPERATION ¥—mm—meeeit

*SYM-SET OPTION *
*INDICATOR TO 1 %
LT T T s T

|

I

v
a¥e
DID

*o
SYMBOL
END WITH A
*o BLANK ¥

*

- O
Xy o%
T YES
|
i
SCN10100 v
LRSI LT T T T
* SEARCH *
* PROGCESSOR KEY *
* TABLE FOR *
* MATCH *
* *
LR T T

Control

*.

#* SET POINTER
P2 TO
* 0oPD 1

* kK K

*
LR T T)

SCN10120
HEIERE 2K NN
* SAVE ENTRY *

Statement Scanner (IEWLCSCN)

. SCN10240 . %.
82 ¥ B3 .
o* IS . o%x IS %,
«% THIS A *. YES % THIS A
o—————> L CONTINUATION o *——mmm >%CONTINUATION
*.STATEMENT o % *OF COMMENTS#* COLUMN %
*. o *o o% *e T2 W%
g, ¥ Ry ¥ He o
T NO * NO T NO
{ ' |
v
EEZ 222
*CM *
SCN1000 v v * Cax
W W C DWW RN RN NN AL L IoE L S22 E] * *
* *

* SET POINTER * *
* Pl TO READ *
* COLUMN 16 %
* (CONTINUATIQN #*
* OF OPERANDS) *
ER RS L SRS 22T T T

*

*4 YES % *

oLo
STATUS WAS
*eo LEVEL 1
*

.

M P—
* NO

|

v
LTS Rt 22 2 T2 2 T 2
* *

SET POINTER *
P2 TO [—
OFD 0 *
*
W WK NN N NRNER

* ok %k

HRKRAFJHHRR AN RN
*TURN ON 'OPD 0 #

HARRAELERERERRARR
#READS CM*

YES * POINT OF * *¥NEW' INDICATOR * W W NN W — R — N — Kk
o R % PROCESSDR #rm—m—m———>*AND SET *LEVEL **——————>% READ 1ST OPND *
* —SET POINTER % * INDICATOR * *OR CONTINUATION#*
% P2 TO OPD 0 * * TO ZERO * * PARAMETER *
I W W NN NN LS AR L RS S S 2 T I AW W NN XK
W R
*CL *
* G4 *—>
*
R v
SCN10180 ke SCN10130 %,
EEE R 2 1L TR 2 Ty G3 *, G4 * g
* * o* ENDED *. ¥ WAS *.
SET YLEVEL®' * YES o* BY A LEFT #*. YES o% AT LEAST *
* INDICATOR *<——y K—~——=%o4 PARENTHESIS %< « ONE VALID .
* TO ONE * . o *.CHARACTER . ¥
* * *o o* *.READ o*
R T TS { e o g o %
EX ¥ * NO * NO
>R * * *N N
#CL * * G2 * t_ * *
* H2 *—> * * >* K3 * SCN10220
* LA 2 * *
RN LR E 2 v
SCN10190 v o¥a
HHW WD W RN NN NN R S S RES S ST S 2 H4 *
* * * * o* ENDED *.
* SET POINTER # * SET *0OPDO * YES «% BY A LEFT %,
* P2 TO * ¥ ABSENT* * L PARENTHESIS o%
* oPD 1 * * INDICATOR * *o o
* * * * *, o ¥
A A SRS SRS \" L2222 RS2 * e o
XRR * NO
* *
* G2 *
* *
WX
v
LR S A A NF-E LRSS 2L s
READS CN¥ .
e el et T et) YES % S
*READ NEXT SYMB * — *o CONTINUITY %
* —SET OPTION # v %, INDICATORS*
*INDICATOR TO 0 * R *o SET o%
L T e R TR P *CM * Ky o ¥
* B4 * NO
* *
LA 2]
v B * *
ok SCN10140 * G5 *
K2 * g W WA W TN NN NN * *
L] ¥ AT * g *PROCENTY * N
* * NO o% LEAST W W W W W F— RN
* GG HL————¥, ONE VALID >%* PASS CONTROL * —
* * *a CHAR * TO CTRL STMNT #* v
EE a2l * g ¥ * PROCESSOR * R 22
* . W NI N #HCM *
LR 22 * AL
* * * %
* K3 * *
* *
L2 2]

FHEKRDSHE KK XK KX KE K

* RESET

* COMMENTS AND
—————>% CONTINUATIOUN

* INDICATORS

*

R o kK %

R T T S

v
HRRNR
*CM *
* C4x
* *
*
NOTE - DPTION
INDICATOR 1S
SET TO 1
W

v *e ok
XX * YES
*CM *

* Bax ‘
L H
* |
v
¥
HS %,
o* 1S
o oLD
STATUS
*<ENDED BY
*A COMMA¥

v *e WX
LA A 2 22 * YES
*CM * 1
* Bax*

* %
*
YES <* BLANK
IN COLUMN
*e 72 .
* 4 -

v *e o %
HREER * NO
*CM * |
* Bax |

* %

*

v
KSR NA
*

* SET *
* CONTINUATION ¥
* INDICATOR *
* *

*

R

|
|

v
EXEHR
*CM *
* Cax

* *

*

Flowcharts - Level E

71

¢ Chart CM.

.
*CM
* A1*
o

»
|
i

v
*

*. ONE N
. Lt
Ko o
* YES
1
|
v
GCN10150 ¥

i1 o
«¥* [CNDED *.
«¥3Y A RIGHT ¥. NO
"

*. ok

5CN10160
TR] RN RN KW
* *
* SET LEVEL *
¥ INDICATOR *
* c0 ZERG *
* *
* *

R e Y

{
|
|
v

HE R LY] XA NN AN
* UPDATE P1 *
* POINTER * -
® N NEXT Emmmee ¥,
* COLUMN *
¥ M
XA RAHHRH AN AR

72

+ PARENTHESIS o *—————

k.
¥ *a
* *.
o* ENDED *e NU
3Y A *
. LOMMA X
. o
P
*OYES
| EET]
1 * *
L-o% Gp o o*
x

Control Statement Scanner

(IEWLCSCN)

GONLOLAS WX,

o

*a

*

A3 *o

N x
-
B2 %o
¥ *a
. ¥ ENDLD *. NO
>*. BY COMMA s
*a %
*, ¥
*.ou%
* YES
|
|
v
XN kR
L%
* How
* *
*

- X 15 *a
.® THIS *, NO

*.o CHARACTER
*a A CUMMA %
®a ¥
o .
YES

*
|
|
|
i
i
v
R P]
* *
* SET YENDED *
* BY A COMMA® ¥
* IN STATUS *
* *
RN RN KR EA XN
P
* *
* G2 *->|
* *

- "

SCN10170

v
KREERGZHNRRRE R AR

*

*
* SET POINTER *
* P2 ON *
* npPD o *
* *
* *

IR e

l
{
|
|
v

HREERD KRR AR AR N

READ NEXT PARAM#
* SET OPTION *
*INDICATOR TO 0O %
EEREAXRRAAN RN R N

Tl
*

eH————> % C4
* *

RN

(Ccntinued)
;
| Yes
¥
A4 *.
- * .
- BLANK * e NO
i > K gy IN CULUMN - H———
- 72 -
‘. o
R
.
tnn
HCM ¥
* 34 *¥——y
* ¥ |
RN |
LCNIO230 A\
FRE A
TEWLELOG Cu
P RIRERES a2
>* ERRUR *
® RUUTINL *

* *
TR KRN

EEARKASHE KK KL ENR
* sETr

* COMMENTS AND
* CUNTINUATIUN
* INDICATURS
*
*

* kKKK %

B KRR KR KA

SUN10210
XHHRRCLEERKER KRN
* *
* RE TURN *
* x
KU R EAR RN AN KN N NN

T INPUT
PRUCESSOR

e Chart CN.

FROM CONTROL
STATEMENT
SCANNER

KN A KKK KKK
* *
* READSB *
* *

R T e

SCN11RDB v
HHEH KB] KKK TR K KR
#* *

* SAVE STATUS!' *
¥ N *0LD *
* STATUS!* *

* *
PR e R T T

v

R KKK AR

* CLEAR WORK *

* AREA REFERRED *

* TO 8Y POINTER *

* P2 *
*
*

*
L T T

v
*&***D]*l*!l&**&&

*
* *
* CHARACTER *
COUNT TO 9 *
* *
* *

LI T T T

v
*ii**Eli***ii*iii

Read 8 Routine

* RESET *AT
¥ LERET oRe
* VALID *
% CHARACTER! *
* INDICATOR *
PEPEE
P
* *
* FL %—>
#* *
FrrY i
SCN11000 o
W W R | NN NN KA F2 *,
* UPDATE P1 * o¥ Is *o
» POINTER TO % %P1 AT
* e >¥* . COLUMN
¥ CHARAiTER . 72
* * *. o
FERR KRR KRR KR RKTRKE P
* NO
}
v
¥
G2 *.
o* 1S
-® P1 AT
*o A BLANK
*a CHARACTER.
ﬁ, ,*
* YES
|
|
v
SCN11050 SCN11040 o%.

X]I
* SET 'ENDED BY *
* A BLANK?®

* INDICATOR IN
* STATUS
*
»

*
HERRH KR EREREREHK

kR

RN

*
x<—
*

|
|
|

NO %

—_—

OPTION *
INDICATGR -®
*o SET .

*, o
¥a a¥
T YES

|
v
¥

Ja

¥ is *,
YES % YAT LEAST #*.

————=%0ONE®* INDICATOR®*#*

* g SET ¥

* *

SCN10230
XXHAKFEIHERXK R XA XN

IEWLELCG GB XXX
Eo kN E— KXW * *
—>*QPERAND EXTENDS*————)* J3 *
* BEYOND COLUMN ¥ *

* i*il

71
&****a*****
Xk
* *
* F3 %
* *
>

|
|
|
v

SCN11010
HW K K TN NN XN

* SET 'ENDED BY *
COMM *

* IND!CATUR TN *
STATUS *

*

*&***************

e
* *
* 93 *—>|
* *

R I

v
PRI TN T 2 L PR
* *
* RETURN *
* *

R
TO CONTROL
STATEMENT
SCANNER

WK TR KK KRN
UPDATE P2 *
PODINTER TU *

*
*
* OTHER WORK
*
*
*

*
HAHEEEEEREHERRKN

* g
*

¥
G4 %,
o* 15 P1 ¥,
o*% AT A LEFT *.
>#%. PARENTHESIS
*

«* IS .

«% Pl AT A ¥,
*e RIGHT - ¥
PARENTHESIS
*, o ¥
¥a ¥

* NG

EEEKEJARERXHEEEN K
* *

* SUBTRACT *
* ONE FRROM *
* COUNT *
* *
EREHEK RN RE R

ERARKCHENER R R RK

* SET 'AT LEAST *

* ONE VALID *
- CHARACTER?' *

* INDICATOR

*

R R]

SCN11020
FREERCGSEEARRRXRNR

* SET
*

*ENDED BY *
= *

*

*

*
R I T a2 T]

I E K

*
—>% 3 *
* *
Ea 2 2

SCN11030

HEERKHSHE XX XNERNH
* sET 'ENDED 3y *
YES R *
————————>* PARENTHES]S' *
* INDICATOR *
*
*

* IN STATUS
R T I T T TR

Ere el
"

—>% J3 ¥
*® *

PR

* 1s
COUNT ZERO
*o ¥
*e o
* YES
| XN XN
L * *
—>% F3 %
* *
EX 223
SCN11005
KAREHRSH RN R XK T RN
* MOVE CHAR. AT *
* P1 INTO WORK *
<—————% AREA POINTED
* TD BY P2
* *
HREERAERRH KN M RN R

Flowcharts -

*——
*

-
I
I
i
|
1
{
|
|
|
|
|
i

Level E

73

®# Chart CO. Include Processor (IEWLCINC)

FROM INPUT
PROCESSOnN

HERNAL RN RRRE XN
* *
* TEWLCINC *
* *

EE A2 R LS RS RS ST

& .

INCLU10C
FAEKKB] FEERR RN RNR
* FIND FIRST
#* OR NEXT ITEM
* IN INCLUDE
CHAIN TO BE
* INCLUDED
L s T

* Kk ok %k %

INCLU250
HHAEAEC2RARE RN FE RN
* RESET *
* "PHYSICAL *
———>% SEQUENTIAL" *
* INDICATOR *
* *
HAEREH AT TR XXX

EEEEEHIREZ I LSS ST

SET *
*PHYSICAL *
SEQUENTIAL® *
INDICATOR *
*

*

% % dk ¥ ok

LRSS RS R LT R TR

l<

A
HRHRHE] X RN AN R
*L.1B0OP cax
Foe A N W N W
* OPEN, BLDL *
* AND FIND *
* *
HH RN KN N AR NN

|
|
|
|
v
-Fa
F1 ¥
L) *,
¥ THIS THE .
*oLAST ITEM IN %
*a INCLUDE %
oCHAING
¥ e ¥
NO

YES

|
|
|
|
|
|

INCLU300 v

HHKEKKG] R R HEH KN XN
* SET
*#OMOCRE INCLUDES
* TO CCME®*

¥ INDICATOR

*

LRSS RS EEE S 2SS

|
<

*

* ok K K K K

LR ERIC-ES RS R RS R]
* RESET *
*#¢MORE INCLUDES *
* TO COME"! *
* INDICATOR *
* *

*

HERERERRE XXX NN

v
M] NN ER R
* RETURN
*
LR s

TG INPUT
PROCESSOR

74

*
*

Chart CP.

HERHC] HRREHKRNR
TO

*

* ADDRESS
* ASSIGNMENT %
L2 LS T2

R

RN

. 1s .

«* THIS AN ¥,
«OVRLY CONTROLe<
*eSTATEMENT & %

*, o
Ea o ¥

* YES

-y

RN KK | RHK AR KRN
* *
MARK THIS ENTRY
*NULL s PLACE IT *
* IN NuLL CHAIN ¥*
*

*
ERREREEERERXNERRR

EE T

* ok ok
0
n

* % %

XHER

HEHARH] HERR RIS AN

IEWLELOG GB
[T T N e e
* ERROR * L
* MESSAGE *

* *
I T T

v
*RER

R

LRI SR I E R S 2
* *
* RETURN *L——
* *

e e I e T
TO INPUT
PROCESSOR

*
P —

Automatic Library Call Processor

HHRKADNNNNERHHR
* *

* IEWLCAUT *
* *

TN TR N XK R
FROM INPUT

EX TS T e TR
*

*
* INITIATE *
> * CESD *
* SCAN *

*

*
LTI

(IEWLCAUT)

PROCESSOR
EE 2 23
* *
* B3 *—>
<
LA A\
‘ %
EEZ SRS L2222 L] 83 *
* * * * g,
* INITIATE * YES o% END *.
* CESD *<— *. oF
* SCAN * %o CESD o%
» * . .
EE X 32 L S SR E S L) Hy o H
* NO
L X2
* *
* c2 *—>
* *
REE v v
Py
Cc3 %,

EERARD2HE R ER RN
*

*
* PICK UP NEXT *
* ENTRY OF CESD *
* *
*
*

*
Ty T TR T T N

o¥,
E2 *o

* .

F2 *o
o¥ WAS ¥,
YES «* A BL *o
r——*PREVe ATTEMPTED*
i *q FOR IT o%
1 *o *

v
R

X

*****Gz*!*i****&&
_180P ca
B Tt ot T e
* OPEN, BLDL *
* AND FIND *

* *
P ey

v
¥
H2 *o
¥ *e

YES o% L180P *a
— FAILURE -
*o ok
*, o
*e oF
* NO

XK J D KKK N

TEWLELOG Ga
i b et STt
* ERROR *———>
® MESSAGE *

*

*
Y S 3

YES
o¥o
K2 *a
* *

«*¥IS THIS*.

«% A DDNAME ¥*. NO
*e ENTRY FOR A o%
*o LIBRARY o%
x, o ¥

PE)
D3 *o
o* *
¥ DOES
*. POINTER =0 I
*e
*

o
* NO

v
L e e
INITIATE *
PROCESSING OF *
THIS LIBRARY %
CHAIN *

*
I e]

v
HRREAETHEREX KRR
* *

* TAKE NEXT *
* ENTRY IN *
* LIBRARY CHAIN *
* *
R R e R T

|
v
e¥e
G3 *.
o *o

o END *. YES %
*. OF LIBRARY o %———>%
*o CHAIN o% *
4 o
*, o
* NO
v
e

H3 *o
«¥IS THISH*,
NO o* ENTRY A *o
L———#MATCHED LIBRARY*
*o MEMBER %

*o ¥
o o¥
* YES
v
oXo

J3 *,

YES o% BLDL

PREVIDUSLY .
*e ATTEMPTED « ¥
FOR ITe%

*e o®
* NO

v
E s T T T P)

. *_IBOP ca*
v NO LIBOP *, L ks T S
—————% FAILURE o ¥ {m————e——% OPEN, BLOL b
. . * AND FIND *

*q ot

* *
EE 2 R T T R Y

Y
MARK THIS ENTRY®

* NULLs PLACE *
>* IT IN NULL e
* CHAIN. *

*

*
L e R e ST s

XK
*
B3 *
*

AR

Flowcharts

Level E

75

8 Chart CQ.

Library Open Routine

FROM INCLUDE/

(LIBOP)

AERKATRERER NS XX

AUTUMATIC LIBRARY *
CALL PROCESSOR. * 1 1i30P *
fl *
ERREANHA AR RN
|
|
|
|
i
v
KRR HAEEHNN KN
SET P INPYT *
¥ POINTER' TG *
HOYLYUBRARY READ *
" PR *
rx K x *
» * R e L s
* D4 ¥
* *
"k 1
A |
| |
| ~o v
.¥a A%
RACIHRERNER c2 *, <3 *.
* % 1S DT ¥, AHIS THISH,
* CLUSE «¥A PHYSICAL *. YES % DATA SET
¥ THE *. SEQUENTIAL GPEN FOR o
* DATA SET * * *. 5YSLIB .%
* SET a% e DCH o *
AREERRERERR *a ou* P
i * x NO
i
i |
i
- [— \
{ v
INCLU400 { INCLU350 ..
HEREXDD AR RN AR n *.
* CONVERT * S F TS 1T X,
SKEKETON SYSLIB V. YES %A PHYSICAL *
¥ DCB INTO A * L SEQUENTTAL .
* PHYSICAL * *a DATA .
SEQUENTIAL DCB » L) o
HREEERREREERE ALK KX
N
INCLU450
HEEERL FEREEE AR AN
* CONVERT *
SKELETUN SYSLIB¥
* DCI3 INTO A *
* PARTITIONSD =
* DATA SET 0CS *

FRREFGTHHRRRR RN AR

INCLUS10
KARAAGOREHEREEREN
* *

R e

v
TR T
¥
*
»
*

HREN

THE
DALA SET

HAEERA XN IS

TEE]
#
AL *
*
KM KK
1
|
!

x
"

v
AR KR ALKR RN
* 5

*
*
*
*
*®

SET
1.0AD MODULE
HBIT

e APT

R

[———

*
*
*
*
*
*

AN KGRI EEHR RN NN

x
*
*
*

u
*

*
x
»

*

HEKENE LAFERRENERN
x

*
-
*
¥
*

DESTGNATE LOAD
MODULF BUFFER
FOR USF AS
P ToRARY

LR R R R R T R

1
i
|
|
v
o

ca

Ehd 1s
* PHYSICAL

SEQUENTIAL
o INDICATOR.
*. ON

.
*

*

o

N w

D4

EE R TS

P—

HADLAE XX ENN

*
*

*

*
*
*

BLOL
FNi MEM3ER
ME

NA

*
R

|
|
|
v
ax,
Fa *
o
o

WAS * o
*a

SUCCES

L
x

. SFUL .
- %
L
*OYES

|
|
v

PRNCESS
MODULE
ATTRIAUTCS

L e

v
FECHHEREERK
x *

*
*
*
*
*
*

AR
*
>
*

NO
>

G2 %

*H R

INCLU460 v
R T

* RESET -
LOAD MDDULE *
31T #*

#
#
L R S Y

®
*
* :
* IN APT
*
*

*
*
*
*
*

v
AHKRAGSHEH RN RN KNI
* CESIGNATLC *
* OBJECT MODULE #
*BUFFER FOR USE #
* AS LIBRARY *
* INPUT BUFFER »
LR R LT e Y

!
I

el 1s
«* BLK SIZE
LARGER THAN
*eBUF SIZE %

*a
*e

*

HS

*

*.
* o

s
* *

.*.
* NO

TEWLELQG GB a* *.
et S L] * SET L1BOP * NO o * WAS *. * FIND *
* ERROR #Lmm—————— % FAILURE BIT *<=— <———%0PEN SUCCESSFUL* * (BLDL ENTRY)
¥ PROCESSING * oN * [*. ¥ * *
* * * * %o o * *
L T Ty e] K. o NN IR N
| xRN * YES
| * * {
I * G2 {
v * *
. AE R
* * v
* K4 * INCLU4SS %,
* * H .
5 xw .x IS *. “xRx
«% KECORD *. YES % * *
%o FORMAT U ake———>% AL ¥ *
. (LOAD % * * *
¥MODULE)% RERN
e o
* NO
|
I
{
i
v
-¥a
J3 *o
»* s *
RE CORD
FORMAT F
*. (GBJECT
EMODULE)% EE T
* o, L
e
*
* K4 X
» * <
s
INCLU610

76

v
RN T NN
RETURN

L R e T]

TD INCLUDE
* AUTOMATIC LIBRARY
* CALL PROCESSOR
*

eChart DA.

FROM INPUT
PROCESSDOR

HHEKAL FHENEHERK
* *
* TEWLEADA *
* *

33633 R

|

|

|

ADAQO100 V
HRRHRE] RN H R RN R R
CLOSE SYSLIN ¥
% CLEAR ADDRESS *
* ASSIGNMENT *
* COUNTERS AND *
%* INDICATORS *
ERER AR E RS SRR LRSS

1
|
|
|
v
*

Address Assignment Processor (IEWLEADA)

ADADO120 . ADA01000
Cl * NN HC 2K N NN
o *COMPUTE SEGTAB *
IN #*. YES * LENGTH AND *
OVERLAY o R >* BUILD A PC *
- ¥ * ENTRY FOR *
* o - *SEGTAB IN CESD *
X, o% PEFT T SE
* NO
|
{
< |
v ADA00150 ADA00200 ADA00300
FAREADLRKKKRR KRN KERERDZAEXRER KRN HAEHKDIH XK N EEERE HEA KDL XER KRS AR KEXKRDS K KX HK X H AL
TEWLCENS DB * ASSIGN TEMP * * COMPUTE * * ACCUMULATE * * IF PR ASSIGN *
ok KKK RNk * LINKED ADDR * *TEMPORARY RELOC¥ * SEG LENGTH * * DISPLACEMENT x
* ENTER SEG #Z——————>%TD EACH SDy PC #————————>¥CONST FOR EACH ¥————————>% AND ENTER IT *——————— >% IN CESD AND X
* NOS IN CESD * * DR CM LINE * *CONTROL SECTION* * IN SEG LGTH * * ACCUMULATE *
* * * OF * *SAVE RC IN RCT #* * TABLE * * TOTAL PR LGTH %
R ZS S E SRS RS E SRS ES S LSS L EE S S S S ST SRS RS EEE SR LS EEE R L SRS K NN KK
|
|
, _
i
o ¥
El * o HRRENED XK XN ERNHN HERRAEIHXREAHHN AR HHE XN G N KKK RN K
o *. * TEMPORARY *TEMP REL CONSTS* * PROGRAM LGTH %
. IN *. NO * L INKED * * ARE THE FINAL * * 1S EQUAL TO *
a OVERLAY e¥—————>% ADDRESSES ARE ¥———————— >% RELOCATION H¥—————eme > LENGTH OF e g
* FINAL LINKED * * CONSTANTS * * SEGMENT 1 *
* ADDRESSES * * * * * 1
ER S L RS R T L Y AWK N K XN H NN NN R RS S EEESE LS LR
{
|
{
| |
ADA01100 v ADAQ1600 [
EEZ ISR SR TR SR TS EE S 2R R S S b T EE 2 2 2ot R T X R R xS R KRG W NN R N ’ AR RIS R R R LR RS
* SCAN SEG LGTH * *PROGRAM LENGTH * * SCAN CESD AND * * DURING SCAN, * | * UPDATE LR *
* COMPUTE SEG * * EQUALS LENGTH * *UPDATE ADDRESS * * COMPUTE FINAL * v *ADDRESSES USING*
RELOC CONSTS ¥————————>% OF LONGEST #———————— »% OF EACH SD, *———————>% RELOC CONST ~>% RELOC CONST %
* (START ADDR * * PATH * * PCy OR CM * * FOR SDsPCH,CM * OF SDs PCo *
* FOR EACH SEG) * * * * * *AND PUT IN RCT * * OR CM x
RS EEE LSS SRS 2 RN N WX K HXKF RN E NN NNERN EEEEZEZE IS LSS S 23 AR R R R R R E S E SRS
|
|
i
|
i
r
t
v
EE ISR T IS 2 L)
*WRITE OUT ERROR¥
* MESSAGE FOR %
*ANY UNRESOLVED *
* EXTERNAL *
* REFERENCES #
AR SRR R s d s s
EREEAHDREEARK KRN
* PROGRAM IS *
NO * EXECUTABLE *
N LET *
* OPTION ONLY *
* g - * *
Ko W% FR KR KKK KR
* YLS

>
|

v
HEREN PR RRAERERH

* SET MARKED
* CESD ITEMS
* TO NuLL
* TYPE

*
*

HEXRRERNRERWXRER

HRHRR JTRAW RN R KRR RN
TEWLCENT DC
Hm XN — N W K H— X

————>%* COMPUTE ENTRY ¥*—

* EXZT NPT TR TR T
* *
*

: * PT AND BUILD *

*

* TO
———>% INTERMEDIATE %
* PROCESSOR *
* ALIAS TABLE * e
R T e et Y

Flowcharts -

Level E

77

eChart DB.

ENS

NS

78

IEWLCENS Routine

FROM ADDRESS
ASSIGNMENT PROCESSOR

ERAKAZRRERREERR
* *
* IEWLCENS *
*

LA SRS SR L RSS2 2T

P

0070
L R PR S
*

* SCAN CESD
* FOR LABEL
* REFERENCES
*
*

KK Kk K

R T T

v
HEARKCDARRAAE RSN
* USING ID OF *
* 1D LLENGTH *
*FI1ELDs REFER TO¥
*SD OR PC ENTRY *
* IN CESD *
HRERARK AR RRNR

v
HRHAD2 R AR RN
*

»
* INSERT SEG *
* NO. IN CESD *
* FOR LR *
* *
RRR AR KRN *

Rl e T T
*SCAN CALL LIST *

* ENTERING *
* CHAIN *
* PDINTERS »*

* »
R R]

v
015 -¥a
G2 *o
«ANY CALLS.

HAAERGTHRAR N AR RR

TEWLELOG GB
A W NN Rk

LR s

AL R T T SR T
* DETERMINE *
* NUMBER OF *
* ENTAB LINES
* FOR EACH *
* SEGMENT *
LR S RS Y

v
HHEKE GO AR EEN RS
TEWLCADL »
K e W K N R N
* MAKE DNE CESO *
HENTRY FOR ENTAS#*
* PER SEGMENT
EREEEE R e

HERRKARE RN

RETURN

*

X
R S T T Y

TO ADCRESS
ASSIGNMENT
PROCESSOR

e Chart DC.

YES o¥%

Entry Processor (IEWLCENT)

FROM ADDRESS
ASSTGNMENT
PROCESSOR
EX 2T F VRS LTS LT
* *
* TEWLCENT *
#* *

KK AN RN

>

ENT00150 v

EZ T2 RIS ST L]

* FIND NEXT *
* CHAINED *
* ALIAS ENTRY *
* IN CESD *
* *
e

l

v
HHRRHC2HHAERNRHRRNR
* MOVE CHAINED *
* ALIAS SYMBOL %
* FROM CESD TO *
* ALIAS TABLE *
* *

*

EEEX LTS 2 22 L2 L L

ENT00190

HRRRRD2HEREXHE XK AKX
SCAN CESD
FOR MATCHING
ALIAS

*

*
* *
* *
* SYMBOL *
* *
* *

IR E 2L RS S L 2L St

v
o*e
E2 *q EZ LI X 22 2 2 2 2L
o * # ENTER ESDID *
o* SYM *. YES * OF CHAINED *
*, MATCH e¥———————>% ALIAS SYMBOL *
*o FOUND o% *IN ALIAS TABLE *
* g P * *
*g oM E2 S S SR XS R S L XL
* NO

v
IR 2 W NN NR
* ENTER ESDID *
* OF ZERO IN *
ALIAS TABLE FOR¥
THIS ENTRY *
*

*
LR 2SI S TR S L L 2

ERERRELRRHR ERER KK
*SET TYPE FIELD *
0F ALIAS SYMBOL

>% ENTRY IN CESD *———————

* TO *NULL:* *
* *
22T S22 SRS 2 R

RRENREGHIR XN AHRER
#PUT ADDRESS OF #
*#SD CR LR ENTRY #

>* FOR ALIAS IN %

*CESD ENTRY FOR *
* ALIAS SYM30L *
L T T T

v
IR KSR K KRR
* PYT ESDID OF ¥
CONTROL SECTION
OF ALIAS SYMBOL
% IN CESD ENTRY *
* FOR SYMBOL *
E e A A L]

<
v
ENT00160 o¥hg ENT00200 o¥e
G2 *o G3 *o
* *o ¥ IS *q
ANY *e NO ok THERE *e NO
——%*., MORE ALIAS o ¥m————————D i AN ENTRY
*o ENTRIES o% *o POINT o ¥
*q ot *o o®
%y o Ko o
* * YES
v
HE RN
*#DD *
* A2
* *
*

ok

v
R X
*DD *
* AS*

* *

*

Flowcharts

Level E

79

8 Chart DD. Processor

ke
DD *
¥ ADE

PINT00500 v
R K H DR R AWK NN

i SCAN CESD *
* ron *

* MATCHING »
i COR LR SYMBOL*

X
R e T

1
{
{
i
v
o
2
oK A
NO % SYMBOL
= FOUND

*
.
.

(IEWLCENT)

|

|

v
HERAXG IR R TR AN
* USING ESOID %
* FROM FND CARD *
* L DCATE REL *
*CONST FOR CaSa ¥
ECUOUNTATNING [aPow
HAERAXAAKXE AR R

KR T HC AN R NN N
¥ ADD RFL CONST *
* TO ASSEMBLED *
* ADDRESS *
X{FROM FND CARD)*
» *
HEERXRREEARERE R RN

(Continued)

ERHRKALHNKHRH LN K
* USING ESDID *
*¥FRUM END CARDs ¥

——————>% POINT TO CESD *

*ENTRY FOR Ca5a ¥
FCUNTATNING EaPo¥*
HHE X KRR RH R RN RN

I
|
I

v
FREERALEKERERRRARNN
* ADD CONTROGL *
*SECTIUN ADDRESS *
* TO ASSEMELER *
* ASSIGNED ADDR *
* TN FND CARD *
EEERAFEEERE RN RRN

.
|
i
i
i<
v
ENTOO0EOO a¥g
Tt n2

[P P —

1EWLELOG GB -* 15 *o
R e s = e ND % ENTRY PT *
b INVALID #L—mm——e = H L CONT SECT IN o
* ENTRY * * o SEGMENT .

* POINT * *¥2NOa le¥®

LR R *a ¥

ENT00500
HEREAE DR R R RN RN
#SAVE E«P. ADDR *
* SAVE »
ESDID OF CaSae *
* CONTAINING *

= *
*

EePa
R R TE T B

<

|
1
{
>

FNTO1C0

v
HARE SRR ERRN
* x
W RETURN *
* *
RAEEKE AR AREE NN
TC ADDRESS

GNMENT
PROCESSOR

80

ENT

-2

01250

FHEE ALK HKRRK KRR RN
*SCAN CESD FOR A%
*#CONT SECT (SDy *
*PC—NCT DELETL) *
* WITH LOWEST *
*ASSIGNED ADDR. *
PEFEPRDrrPa

.
* <
.

1
v

HREEEDSHEK KRR TR RN
EL0G

1EWL. Ga
[e et

* INVALID *
* ENTRY *
* POINT *

HHIK AR KR XN XNN R

Form Y28-6610-2,

Page Revised by TNL Y28-2356,

.
eChart EA. Intermediate Output Processor (IEWLEOUT)
Ioess
AESiENReNT
Rk f Dk ok b kok ok
* *
: IEWLEOUT *
EEEEZ R LR 22 2]
0UT00300 _.*.
B2 k.
) *
. NOT
*l, EDITABLE
. .
- .*
I NO
l 0UT00400
Aok A ok ORC D % ko ok oKk K kK ***t‘c}ttlt*'t***
*
* WRITE QUT * * BUILD p
CESD ON —mmomme > HALF *
* SYSLMOD * : ESD *
ok ok ROk Kok ok A o e ok ok ok koK ok R KOk Ok ok
v
0UT00525 _.*. 0UT00970
3 *, Aok Rk YRk R kok kR
¥ *TEWLELOG GB* HERKADSERREE SR KK
. XT *. NO = e e e B * 0
%0 IN LOAD ldeeemeo >* NO TEXT e >* FINAL *
. MODULE . * IN 10AD * PROCESSOR
. . MODULE AR AR R R Rk KR
K ok ok ok kR Rk Rk Rk kR Xk
I YES
% OUT00550 . *. OUT01000_ .*.
HEAKRE T RRAKE AR KK E2 *, E3 . *, FRKKKKEGR AR KRR KR
* GET HIERARCHY * X *, ok . ox * BUIL
* NO. FOR EACH * YES . ¥ s Lx s *. YES ¥ NOT *. NO * WRITE OUT *
*CESD_ITEM FROM *<———mm—nr . HIARBIT _.*<—— *. PROGRAM IN Lko—Zmme o >*. EDITABLE _.%- — SEGTAB
* HIERARCHY = * . UsETT . *. OVERLAY .* *. .* * CONTROL *
BLE . _* . ox *. o RECORD
A o kK OK KK Rk Rk kR *, % *, % *, .k ERE TS S TS LT)
*"No I +7ro *"YES
| | | >
©UT02000 N 0UT01100
KRR RRKE TRk Rk kR kK AOK AOKRE 2 %k ok ok Kok Kok F3 *, EEREE 2SS TS L SRS 2 2 E 2]
WRITE OUT * BUILD 1s k. BUILD AND
* SCATTFR * % SCATTER AND * YES_.* PROGRAM %, * WRITE *
TRANS P * TRANSLATION * L. ITO BE SCATTER.* oUT
% RECORDS * ¥ TABLES * - [LOADED .'* * SEGTAB *
Aok ook R KoK ok Rk o bk ok ok ok Ok ROk R ok K ok 'i. .t. EL L RS2 222 L2
*"No
>)<
0UT90560
AR ERG IR AR AR R
PUT RELOCATION *
* CONSTANTS
* HESD FOR SD *
* BC, cH, OR fr *
e o ok ok ok Ok Kok Ok Kok ok ok ok
Aok KR 3% ook ok KRR KOk
READ TXT
AND_ RLD
NOTE LISTS
* INTO MAIN *
STORAGE
ok ok ok K KOk Kok ok
0UTOO570
ok PETTE KK
* K . *
+WITH HIGH ESDIDx
*IN PROGRAM (OR *
* EACH SEG WITH ¥
STETLIE.QVFRIRNLS
0UTQ0575
A RKKE KKK AR AR AR K HRRRRK R ARk
* SAVE HIGHEST * * - RESRRSAREEREE £
* "SEG NO., OF * * INITIALIZE * * 10 SECOND *
¥ TuRECCONTA [x oND BASS - % PROCESSOR *
*
* THAT QONTAI“ . . SEC * ##tt*itt###tttt
e e e ok e Ok OK R Ok ok ook ok A ok ook ok ok ok ok ok ko &
Level E -- Flowcharts

11/15/68

81

Chart FA.

FROM
INTERMEDIATE
PROCESSOR
ARBEATRRAREN NS
.
+ IEWLESCD

HENBBRBBHRRREN S

82

Second

wenaw
“FA *
* A2%

Pass Processor (IEWLESCD)

v
SCDGETID v SCDRELOC %,
HRBREADHERRAB BN A3 .. BEEREALRBER BRI
SEARCH HESD # 4 *o *SCDRELOC FC»
- FOR NEXT - «4THESE RLDS *. NO Lt L L L S B
>% CESD TO BE * #o PERTAIN TO % >* *
* PROCESSED * 4. ENTAB .+ A e -
* . .. o - -
ARBEBRR SRR RN DY L ‘ P T
* YES 22
“rnn - -
* - * A4 ®
* B2 #-> »
- - e
- v
SCDRDTXT ot
RERERG2RBRRERRO RN ERABURIE IR RARREE a4 ..
READ ALL TEXT # ® MOVE RLD » o ALL ¥
OF CURRENT * * FROM ENTAB # #RLD RECORDS*. NO
* MULTIPLICITY # * BUFFER TO RLD # > PROCESSED %
—~INDICATE IF * oUTPUT * .
#MORE FOR CUR 1D% * BUFFER . e 4
PRETT TR P as T EREBRERRERERNRR NN ., o
* YES
v
REBRRCO2RRARABENDE ARANRCIERIRAABRAE
- CAOMPUTE - * ADJUST RLD »
* LENGTH b # BYTE COUNT L
- OF TEXT * * AND PLACE RLD #
* IN BUFFER » #ENTRY IN CONT/ #
* * # RLD RECORD #
FRPEBAR BRI RRR RS FEEBERRBRABANO NN
nen
*Fs w
* 03 -__1
v e v
SCDRDRLD o¥%, LN SCOOUTPT
D2 .. D3 ., FRRARRDAERRIRRSSRER
o® ANY ®, HA OVERWRITE
«% RLOS IN &, NO ¥ oum *. YES # DUMMY TEXT -
-, TH - o——y *. TEXT BEE! " > IN PLACE
%. MODULE .# *o WRITTEN o * USING -
o o* . . XDAP
I . . ABusERERERLS
* YES * NO
e
SFA
* E2 #->
sene
SCDOQUTPT v
E3%
. READ RLD » WRITE *
RECORDS UNTIL # # TEXT AT NEXT & -
® ALL ARE READ # AVAILABLE e
- OF BUFFER - - 01SK - - BUFFER *
- 1S FULL - ADDRESS - *
FRARRARGRBRRE AR [T ST Y SRERBRRBIRRARI RS

REBRREDRR BB SRR

® SAVE END OF #
#LAST RECORD IN #
#BUFFER-INDICATE®
- 1F_MORE -
® YO BE READ _ #
ERARREARRIER B NI NS
R Al]
FA # <
G2 #->

*
RN

SCDEXE

HBHRRG2ARARBR AR N
» T
* CONTROL .
* INFORMATION #
% AND WRITE
» RE »
LA AR 222222)

H2
% IS .
-2 THIS #« ND
#.FIRST RECORD o%——
#a OF A -
#*. SEG %

REBBR I RERARRNNDE
.

» AV

» RELATIVE -
* DISK -
- ADDRESS -
* -
LT R R R T e Ry T

k2 ..

o% ANY #,
«* ALDS FOR_ #. YES
'-'YHIS CSECT ‘..

ERBRBCI R AR R RS

* COMPUTE »
g BUFFER *
>% RELOCATION *
- CONSTANT -

» -
LTI P A Y T

SCD

RDRLD

BEARRCER R AR R BT

» READ R

* RECOR
e OR
-

DS
BUFFER
FuLL

1S
BEBRAARRARRRRB AR

L0 -
UNTIL #
ALL ARE READ

«
*
-

ERERBDEAAR SRR N LN

* SAVE
* LAST
IN
- INDI
#MORE T

END OF #
RECORD #
BUFFER *
CATE IF
0 8E READ*

L T A ey e

3

MOR
RECD

ANY
E TXT
RDS FOR

e
-

« THIS ID %
*a o

-
»
.

ot
#* NO

v

(Y]
FB *
Al®

.
o

Chart FB.

HE RN
*FB *
* AL¥

¥ ALL ¥,
¥ TEXT OF *. NO
*o CURRENT
*, SECGMENT %
WRITTEN

B1 *o
«* DOES %
«% SEGMENT %, NO
*o CONTAIN
*¥o ENTABS o%
* g ¥
*e o¥
#* YES
|
|

o X

SCDENTAB \
HERHHC] HHRNR N AKX
¥CREATE TEXT FOR#¥*
* ENTAB AND RLD *
* FOR SEGTAB —-— *
SET RLD INDICA-—
* TOR IN APTe. ¥
S KW NN

i
3
*EA *
* G2*

Second Pass

Processor (IEWLESCD) (Continued)

o H——————

v
* 3K KR
XEA *
* A2
* *
*

ANY ¥,
RLDS TO *. NO
BE WRITTEN o« ®———
*o ouT ¥

>¥a

NO % 1s *o
THIS LAST %
%o SEGMENT %
*

—

v
HEXRED2EHHHHERH XX
SET END OF
MODULE
INDICATOR
IN CONTROL
RECORD
KN RR R

—=>

|
|
A\

K ok ok ok kK
% ¥ ok K XK Kk

X WD IR H NI
SET END OF i
SEGMENT #*
INDICATOR i

IN CONTROL *
RECORD #*
AR NH

* %k % ok Xk ¥

SCDOUTPT v
KKK 2K KW NN R
WRITE
* RLD *
CONTROL
* RECORD *

E2 222 2 2 2222 L

P —
1
v
o¥o
G2 - EE TR ekt T TR 22 22
o *o * *
o ¥ ANY *o YES * GO TO *
, MORE . >¥ NEXT * 4
* o SEGMENTS &% * SEGMENT * v
*, o * * XX
*e o RN NN NN KRR HEA *
* NO * A2%
% *

v
X RE A2 N HHER KK

T0 *
* FINAL *
* PROCESSOR *

363 2 I I I KX

Flowcharts

Level E

83

e Chart FC.

84

FREEADRA R RS RNN
&

»
® SCORFLUC *
% i
AAREEEAA AR A ENK

v
HRERED R KRR K
* SET VIN-CORE' *
* IND. OFF, *
*CUMPUTE SIZE OF %
#RI.D INPUT RCDa ¥
x %
BRI KK AW NEN

FEreY
*

* G2 >
» *

*EHw

v
FEARKCDRERAARERNR

* SET UP FUR *
* SCAN AND TEST *
* OF CACH RLD
HLTEM IN CURRENT®

CORD *

REC
AR EEAEA AR RE RN RN

AN .

01 " 02
<% COES #. «* DDES %,
X THE NEXT * NO +* CURRENT %

TEXT RECDRD

{mmm—————%. TEXT RECDRD .%
¥a CONTAIN o “a CONTAIN ¥
aADCONG *.ADCON.*
« . *
* YES

P
* YES

v
HRNRRE] KRR RER R
* SET *

* CaMPUTE *
* * TN-CORE * * * LENGTH »
* INGCICATOR — * * OF ADDRESS »
» * + CONSTANT »
* * * *
EAR KA AR ERR AR AR EEA KRR AERARE AR
i
1 Xann
> ox
% K4 *
P *
e

ERRENE L HAR KRR E R
LEWLEL DG Go o*
P i
*TINVALID 2-BYTE #<—- INVALID
®* ADCON HAS NOT ¥ *.(2-BYTE)
¥BLIN FELOCATED ¥ *. .
HEARKLNHEEEE R NN PR
NO

ADCON

x
} LR R 1
[{
Lorxx k5 * i
% * 1
xwx v
*
R ARG AR RR AR Go Tw.
®5CDCUTLD * o
[B - YES o%
¥ SPLIT ADDRESS ¥<————————%. CONSTANT
* CONGTANT * e GPLET W%
* ROUT INE » *a -
WA NN KRR NN AR
N

CLUELINKING . ¥
. b

P

*ves

v
A D E AR RA AR
* NBTAIN DELINK *
* VALUE AND *
* CORRECT R *
¥ POINTER FOR %
* RELDCATION *
AR ERAKRAAAKEA R AR

U

v
RELOC70 a*a
2

.x 1S *

YES L€ THIS AN

- < OVERLAY

€. MODULE
*

Relocation Routine

e

Anwrw

[T

PR
L

«
|
B
i
HLLLCTS v
HERASEE R AT AN
MOVL
ADCUN

»
* »
* FRUM TEXT TOQ
* WORK REGISTER ¥
» »
* *

*x
»

L AR L T T

15
RLD TYPE -
HORILATIVE o
*a .k

*

*
Y
* 4 ADCON

ERAEE IR A AR RN A

* *
* -
* NEGATIVE »
* NUMSE R »
* .
FRAAAAE AR AA RN E AN

e

L3 owe>

*kx

-
TR

v

EEAXKEIAXRER R AR A

PERFORM *
¥RELOCATION —ADD¥
* OR SUBTRACT
* RELOCATION »
* FACTOR *
ARERKREN R KRN RA AR

AKEAKBEEAN KA RE AN
* INSERT *
* CUMULATIVE PR %

===>% LENGTH INTO *
* VALUE OF *
-t * ADCUN *
o HEREENEEAREAARARR
* NO
| xnx
1 *
| —>% F3 %
I * *
v R
.
*. HARAACSHAERERLRAN
*. * ADD 0OR *
1% *. YES * SUBTRACT *
a RLD TYPE - e > DEL INK *
FOIDELINKY o% * VALUE *
x. o * *
L— P e
*ONU [
|
|
| v
I wnw
v
ot * w3 o*
D4 .. N
" ¥ kxxx e
*a
E3 *
*CAUSOLUTE® o ®
" o X
LR
* NO
f
|
v

ERRARCAAX AR BN AR
*TYPE 15 JRANCH *
¥0R PR _TYPL | - %
INSERT ABS RELa
* FACTOR INTO
¥VALUE OF ADCON *
AR R REAR R R RARS

RECORD

x
»
®
x
x
EAAARAAAEA R R A AN

ko x
TZAM
2
o
x
3

*x

JCOMVRLD v
AEERRGIXKEN R EAA 2N
* ADD RELATIVE ¥
* RELUOCAITUN -
* FACTOR TO *
* ADURESS FIELD *
* OF RLD ITEM
HEEAEAH AN AR AR

et
* NO
‘.
1
i
v
e
13 *e
¥ *a

N R
*. RLD OUTPUT
*. BUFFFR

HHEEHIC IR RN AN
* MOVL RLD ITEM
TO OUTRUT
*BUFFER, ADJUST
*HYTE COUNT AND
¥ERFE SPACE PTR.¥
EEREEAREEXARRARR AR

$COOUTPT
EEARREGEREREE AR RERN
WRITE OUT
* A *
DUMMY
* TEXT *
RECOR

HHHH AKX KK

v
P EZ R T TR S T
x S *

* SAVE RLD * SET

* ITEM IN * * WRITE *XDAP' ¥
* HESD PREFIX % * INDICATOR *
* TOTH LENTRY® # * OoN *
* * * *
EAEREEREEAFAEARER EAAREANEEE AN HKAR

SLOUUTRY
R A NI R T T
WRITE OUT
* RLD RECURD *
INITIALIZUD
* BUFFER *
CONTENTS
HEKRAFANHEXEN

L T R T T TR
*RELOC 120 *
R

~>*DIRECTS RETURN #*
*

A TO PROCESS b
{ % NEXT RLO ITEM *
x [MrEARAAE AR AR UNS
*oYES EET Y !
| * * {
I * KH o* {
v x * v
UK N *nw R
AEI % * *
* pox * c2 *
xon » *
" e

eChart FD.

AKX
*ED *
* A2

v
*o
*o
% IS IT %,
«* A V-TYPE %*. NO
*e ADDRESS
*#oCONSTANT %

ScoavLy .
A2

*e -
e o
* YES * A3
{ *
1 *
|
|
v
oo
RHAKKB] XKKAKHHR KN B2 *.
* [EWLELOG Gu* AN
R Y ADCON'S
* INVALID *< LENGTH FOUR
* V-TYPE * .*
* ADCON * . .*
T *e o%
* YES
i
v |
W |
*EC v
* K3 .
* x ca_ x.
* ox IS %,
o THE *. YES
*ADCON'S SYMBOL o %——————— ~
*UNRESCLVED « % v
% o XARER
Ny o *FC *
* NO * A3
* %

GETSEG v
FEAXKD2HEREEEREHN
* *

*OBTAIN SEGMENT *
* NUMBER OF *
*CALLED SEGMENT *
1 *

B R T

v
KR KHE 2K N R
*OBTAIN SEGMENT *
* NUMBER OF *
*
* SEGMENT ¥*
*
*

*
EEEXRRA X ERRKHAR

v
K HA D2 KK KN XK
*TEWLCPTH *
KoK KK N KN
*FIND COMMON SEG¥
* WITH HIGHEST *
* SEG NUMBER *
s

YES % I

s
—%*+ 1T AN UPWARD
LL o*

%, CA
X * o ¥
*FC % *e o o%

* A3 * NO

H2 *a
-* 1s
o

Relccation Routine (Continued)

17T A
*. DDWNWARD
* CALL
*. o

¥ oo
NO

v
J2 *o
- 1s *a
. IT A *e YES
*.LATERAL CALL «

*a ACROSS o%
REGIONS
¥ o¥

* NO

v
ComMpP e¥a
2 *a
-* iIs *e
NO o%

IT AN %o YES
%, ALLOWABLE .

v

v *oEXCLUSIVE.*
R ¥QCALL %
EC_ *e o%

* A3% *

v
o*,
s’ Ca. EREEEEE R IR RN AN
ox *. *[EWLELOG Gux
* wILL e W N N N A X — R
ENTRY ILIST TABLE *
OVERFILLOW % » OVERFLOW *
*o - * *
P NRRRE AR K KRR RK R
* NC
|
!
v
Prae.
1 HGA *
v * o
AR RCARNANNRANE R x K
® * *

* CREATE NEW *
* ENTRY IN *
* ENTRY LLIST *
* *
* *

KKK NN

v
HRHEHD G XK K E KK N
#* CHANGE V~TYPE #
* ADCON'S VALUE ¥
* SO0 THAT IT *
#POINTS TO CNTAB*
* TRY *

CN
P

v
KRR 4NN R KX
* *

* *
* *
* RLD *
* *
* *

ITEM
KRR KRR

v
HHFHRE 4K NI KN R R
*

*
*END-OF—ROUTINE *
* HDUSEKEEPING ¥
* *
*
*

*
TR KK IR

v
P
*FC *
* G3*
*

R LKW K
* CHANGE V-TYPE ¥
* ADCON'S VALUE *

>% S0 THAT IT ¥e—emem—y
*PDINTS TO EXISTH v
#—ING CNTAB ENTY* EARRN
PRI et *FC *
* G3x
* x
*

Flowcharts

Level E

85

® Chart FE. Relocation Routine (Continued)

I ATIH RN RN
* ELIMINATE
* RLD NDTELIST *
* ENTRY FOR = #Q—————k
* THIS RECORD ¥
*

*
LR T R R

RELOC200
HERRRDDEE AR RN NN
* INCREMENT *
* TO NEXT RLD #
RECORD POSITION
* IN BUFFER *

* *
Y T e

v

¥
c2 *

* I3 *
#* AN RLD *. YES

*a RECORD —
#*. PRESENT .% v
*. ot *EEE
* * *FC %
* w

* NO * a1
i

SCDPSHUP v
HRHRRDDHRERHH RN
MAKE BUFF SPACE%
AVAIL BY MOVING
* PARTIALLY ol
PROCESSED RCDS #
OVER PRDC. RCDS#
P e

v
¥
E2

¥ v w.

«* MORE RLD *. NO

#RCDS TO BE READ®———————y
CURRe o *

*.FOR v
* TEXT R i
L *EA *
* YES * D3%

. %

*

v
RELOQC220 ¥a
F2 %o
«*IS THIS*,
«*RLD RECORD *. NO
oPROCESSED FOR,¥———
*. CURRENT %
*LTEXT o%

Ka ok
‘I' YES

v
EREUHGDER AR A
* MARK IT
* PROCESSED. S0
*IT WILL NOT BE
* READ IN AGAIN
*

EEEE Y

PR T T
|

e
i

v
RELOC230 «%.
2 *

- *.
ANY *. YES
ROOM IN RLD o%———
-« BUFFER .
ey
* NO

v
NN JD NN NN
* PERMIT THE d
* LAST RECORD »
* IN RLD BUFFER #
- OYERLAID *
» -

*

B T e T

<—

v
WD RN R
SET RETURN
FROM READ RLD
TO RETURN TO
‘RELOCATE

>k ok
LTy

* ROUT INE
PR R

v
Fre-m
HEA *
* Eo

86

e Chart GA.

Final Processor (IEWLCFNL)

FROM INTERMCDIATE
OUTPUT OR SECOND
PA35 PROCESSOR FROM BISAM

HHAHATERRT RN

HRREAD N RME RN
* SYNCHRONOUS %
*—

* *
* IEWLCFNL * *
* * *

ROUTINE *
HHARRERENARRHRE IR

FNL100
FrE TR RS TR P

P N
* *
SYNCHRONQUS *

> * 1/0 ERROR *.
* EXIT ENTRY *

* *
P e

Fr LI - T e T T
: PLACE TTR_OF :
* LIST IN PDS :

:

e

. ovLY WRITE TTR %
*. OPTION LIST FOR — >% OVERLAY TTR
% SPECIFIED* * SEGMENTS %
. o * “DIRECTORY
P HERRKNEEHERR
#* NO
1
<

|
FNL300 v
A HIC DN E KN RK HHHKIC TR KM AR RH

* PLACE MEMBER * * SET UP C—BYTE *
* NAME IN PDS % * OF DIRECTORY %
#DIRECTORY FROM *— ~—>% FOR BLOCK/ _ *
NAME CARD X *#SCATTER FORMAT *
H OR DEB * *
R 04— R ERE RN
T
*GA *
* D2 *——y '
* %
LA LS
FNLSTA v FNL700 FNL60O
HAD2AAKKRER HERKRDLKRXKXT K h KX
STOW * o *. *TEWLELOG GB*
DIRECTORY * o ANY *. YES Ho KK KKK
WITH ADD OR %————————>% ERRORS o >% LDG ERROR *
* REPLACE AS B * % TYPE AND *
* DIRECTED * * o * MESSAGE *
EE S ET S22 *e ¥ RN WA NN F NN RRRN
* NO
A" |
* * |
* E2 %— v
* * 1<
wxx v
FNL900 ke o,
*, KRR W INW RN KRR E4 * o
o *o * SAVE MAIN % % RENT #.
% ANY ALIAS *. YES * MEMBER NAME * <% OR RBUI *
. TO BE . >¥.

————>‘AND ENTRY POINT*
IN ALIAS *

*. STOWED

ATTRIBUTES
ON

HRASREE R R

x *
* CLOSE *

FILE IN *
* ERROR *
* *

HREARIRNH K

v
P T T Y
TEWLELOG GB
KoKW K N K N W
* SEVERITY 4 #
* NO RETURN *
* AFTER PRINT %
e e]

:;aa{ssnan*nn&*«*

*
YES . *
———————>% AND E.Pe IN *
* DIRECTORY AND *
* ADJUST C—BYTE *
EX I TSRS 2SS 22222

NAME *o o
I&*&*l***&i&*lﬁ*ﬂ *, ¥
* NO
<
wxxx v
FNLCN ke FNL9OOA
2" “x. KEARRETERNKEARRRKE FA 2o (R
«% HAVE * * * * PICK UP '
«XATTRIBUTES *. YES *PRINT IMAGE TO * ¥ ALIAS EaP.
*4CHANGE SINCE >% NOTIFY OF % *(EITHER O o
*¥oSTART OF o% * CHANGED * OR USE MAIN *
*.EDIT % # ATTRIBUTES % A EaPe) *
e ok P
* NO
i
ENTRY FROM * GZ x>
TEWLELOG OR*
1IEWLEIN_TO P
TERMINATE v FNLCN2 FNL301 v
HREK RGN EE TR KEGHERNEREN
*IEWLCBTP * STOW ALIAS IN
oKW F KR Kk * PARTIONED *
* GO TO PRINT * * DATA SE *
* DIAGNOSTIC % * DIRECTORY %
* DIRECTORY % e » v
PPPREN S RN * * EREEAERARRK
* H3 *
* *
rxxn
v v
oo T1EWLCEOT %,
EREEKHL HXRRERRR RS H2 TR
* TEWLCMAP GC¥ o *. o *
B it YES o% MAP *. ND o END
* PRINT MAP e, OR XREF Thd >* o OF
* OR * *.SPECIFIED ¥ *o INPUT
* XREF * * ¥ *
B Y o *e ox
* NO
v
P — —
* * 1
* H3 % FNL150 v v
* * {-J2-~a*«*n X B R P e
e * * *

*rEposITION CLOSE *
* lNTERMEDlATE * ALL

* FILES *

* (svsun) * *

*
HEIH RN RN RN
i

v
v T e
R D AN * SET up *
* RETURN * *CONDITION CODE *

*
* GO TO PRINT *
* ALIAS NAME *
* WITH MESSAGE ¥
*
*

*
P T s

e R S T S
*TEWLELOG G8
B e T]

> LOG ERROR *
* TYPE AND *

* MESSAGE *
AR RN RNH R

v
* WX
* *
* F2 *
*
PP xxxw
>% E2 *
*
R L

FEERKSHAREXRREN

* TO * * INDICATING IF
INITIALIZER %

T *
**ﬂi!l!i!l!lii*'l

* RETURN
> T0 H
*

CALLER
P i e]

Flowcharts

Level E

87

Chart GB.

HANERC] HW AR TR XN

WRITE

BN N

I

v
HHBED] A RREA A
* *
* RETURN e
*

*
R

88

Error Logging Routine (IEWLELOG)

AERBAD KRR A NN

* .
* TEWLELGG *
* .
HRR AR E NN NR N

v
HEARHIDEE AR ERXN
* SEPERATE *
* ERROR CUDE *
* AND "
AMESSAGE NUMBE R #
N *
-

e T

02
«* CESD #,
«# SYMBGL TO *. NO
*. BE WRITTEN
04T

o

*a o
P
YES

*
1
1
1
1
i

R R DR AR R RE R
M *
* MOVE SYMBOL %
* TO MESSAGE *
* BUFFER *
* *
* *

HHAHEAER RN N

i
1
{
i
v
*

2 *a.
- .
o 1s *. NO V
*THERE A 5ECOND ¢ # e
L SYMBOL ¥
. o

o o
* YES
{
|
!
|
|

ARG IR R AR
* ov *
* SECOND *
* SyMBOL To
*MCSSAGE BUFFER %
* "
*

HHEARHH T TSN

1<
i
i
v
“*e
.¥ *o

CONTROL
STATEMENT

0 J
* o ADDED.*
Fa

* YES

v
EREENJDRERR AR NN N
* USE ADDRESS %
* IN GR 2 TO *
* MIOVE CONTROL
ASTATEMENT INTO *
AMESSAGE BUFFER *
AREREEEERARTRARE N

P SSS—

R T Ty

WRITE
* ouT *
MESSAGE
* BUFFER *

HEHEEA NN

v
Xxxx
® B34 x
* *

*Ew

X TS
»
* B4 »
¥

s

v
EXRBABLAEERER N
*

UPDATF
CONDITION
CODE

T

»
-
*
*
»

R e Y

v
¥,
ca *.
o* *.
* SEVERITY #. YES
CODE - *— -~
* 4 o v
*. o rreT]
LN *GA *
* NO " D2w

* % TO FINAL
* PROCESSOR

{
|
1
I
v
HARROL AR RN A "
*

»
* RETURN *
* *

EEHRRERA AR AR

Chart GC. Module

NHRHADEEEH X R XN

* *
" ICWLCMAP *
x *
P HERAEAKERKHEH R
* ®
* 81 ox t
* * I
I KK {
1 1
{ |
v |
¥ MAPOOO

R DK RN AE

* *
* *
* PRINT *
* OPEN SYSLMOD ¥
* *
* #*

KRR KK R

P —

MAPOO L
EARXKEC2HHHEEEIARER
RLAD CESD AND
FIRST CONTROL *
RECURD
* FROM *
SYSMOD
KKK KA KN

HHRENC] R R A H NN
REINITIALIZE *
REGISTERS *
INCREMENT *
*

x

*

*
x

*

* SEGMENT NO.
*

*

LT 2T T T2 T2 Y

i
|
i
|
>
i

Map Processor (IEWLCMAP)

.
|
l
|
|
|
i
L
v
-¥,
B3 ¥,
*a
NU o % 1s *e
———#a RLD TYPE o
* PR2 o*
x. ox
PP
* YLS

|

|

t

|

|

v
HHREKCIHARK KR AKX KRN
*

*
* *
* *
* VALUE *
* *
* *

FES T I TR TS

YES

HXH
* AL ®
*

EH AR

A4 ¥

* 1

S *o
#e RLO TYPE PR %
*.

o

b
XIS

*a
CESD*,

g TYPE ER *e YLS

#*o(UNRESOLVED) o¥—————

UNRL S ¥
AS ¥
o % wa
«* 15 CESD ®e NO
——>%. TYPE NUVLDR »%——
CAL: .

1
. . I
Xy o |
Yiit I
i

i

i

*
|
i
i
|

R e T T S)
* INDICATC

® TNEVER CALL'
* ON NAP
- LInNL

M
M
PRINT %
%
x
*

*
IR TR L TR

i
|
|
H

. o
K ok
* NO
|
i
|
1<
|
MAPO119 v
HERAEECLHIIRIH KA KR
WRITE
* OUT LINE *
ON
* SYSPRINT *

KRN RN

———————% ON MAP PRINT

HEEHECGHER KR FHR AR
x INDICATE *
* TUNRCSGLVED? *
o
*

* L INE

* *
K KNI NN

R K ERD] KKK X R KRR
WRITC OQUT PR'S

#CUMULe LENGTH, %
anbd LePe ADDRes
* TOTAL *
LITNGTH

RN RN KN

P——

KKK [T KKK R KA
= *
* RETURN *
#* *
e s

TU FINAL
PROCESSOR

ErT
* 31
*®

XX

A\
FEERKDD AR AR IR AR
*MAROO3
R K o R N R
* GATHER CESD ¥
* ENFRIES FOR *
* PRESENT SEGa *
33 3 3 K RN KRN H N H

*
*

PP

MAPOLA
HAAKKC2EFE R KRN KRR
*SURT ASSEMBLEDS *
* CESD ENTRIES, %
* USL ADORESS *
* A5 KEY *

*
*

*
KK IR AR RN

|
|
|
|
|

MAPOOSS v
AT 2NN KRN

CREATE MAP

*
#*

* FOR THIS
* SECEMENT
*
El

Xk kK K =

KRNI KRR

|
|
i
l
v
%
G2 *e
- * o
NO «% XREF
SPECIFILD

ER |
#

X H2 #->|

* *

o i

XREFS v
P P

* INITIALIZE *
* FOR LOUP *
* CF CESC *
* AND RLD *
* *
W K 3K RN R KT NN R

|
|
i
|

<
*
* *
* E4 ®
* ®
KK
v
RLDOUT ¥
€4 *e
* X o
* * LAST ¥ THIS * RLD
* Bl
* *,
kW

v
ERRKHAE L ERREEEERHRN
* FPASS OVER *
TEXT
* RECORD *

EEEAREEEEERRKE

|<—
{
|
1

v
S S el
* READ *
RLD
* RECURD *
R KR KRR R

|
i

v
R R
* H2 *
*

FTe

MR] KR H R H N

* INCREMENT *
* Ty *
® NLXT

" 1TeEM ®
*
HEAREREEEREX AR R

Y S———

|

|
>l<

v

MAPO12 ¥y

Level E --

Flowcharts

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

e Chart GD.

90

SYNAD Routine

ARl VALI A LT T E T
ENTER FROM BSAM
* *

* *
R e

AR A CDHAA NN
:ENTER FROM BPAM*

*
Aok AR Aok kR Rk ok KRRk

AR D R Aok R Rk
:ENTER FROM XDAP*

* *
kR ko kR koK ko

A VAR L L
*INSERT® IEW0630 " *

RS FOR HPAM
*

[R

LTEWLCROT o

\ *.

AR R R Rk Rk Rk
* *

* NADAF MACRO #
* FOR BSAM *
* *
* *
EEAEERERERER AR R
rokk
* *
L% P &
* *
Ak

LLNLCRQZ
*tt”{tﬁttttt*t*

t
* uYNADAF MACRO ‘
4

* *
R R T T Y

\
.

R
¥ *.
CHUNTRY FROM *. YES
MAD

IFdLPRO%
EEE IR R T LT Y
*

t

* SYNADAF MACRO *

FOR EXCP *

* +

* *
L
wEEE

ok
TEWLFSER . *.
F3

L
¥ FERROR

[

LR VEE SRS ST E 1Y
* RETURN TO *
* CALLER *
*

FRk kR Rk Rk ok Kk

#**tthttt****t*t

SET BIT *
* IND]CA’IIN(; *
ERROR WHILFE *
:RHADING SYSLMOD*
*
LEE A R Y
*okk
* *
~>% F3 *
* *
LR L]

KAKEERL KR KRRk k
INSERT'IEW0294°"

IN MEQSAGE, SET - *IN MESSAGE, SETI*
*BIT IN APT FOR * *. READING K >*BIT IN APT FORr *
* BIT MAP * *.S5YSLMOD . * * BIT *
* PROCESSOR * *. ¥ * DPROCESH!
RER R E T R LY L *tttxtt***t*t*t*’
*
— <

FARERK DRk R Ak
* RETURN TO

* MAP/XREF

*

ok Ak Ok R R K R R K K

*

ARK KK IR REE R R R RA K
% +

*MOVE
: PRINT

MESSAGE TO*
BUFFER *
*

* *
FHERREEF R AR Rk kK

&%#*tﬁ{tt*i*tttti

*[FWLEPNT
—k Kk t

*PRINF

tttttttat*tt#tt*t

MESSAGF *
*

v
KRR T IRE R R
* *

3
*GYNADRLS MACRO
+

*
*
*
*
*

*
R R R R Rk

v
Wk

HEEERURR KRRk
* EXIT TO FINAL *

——D% TO ABORT *
*

*
Rk kAR ok Rk kK ok k

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6L400

APPENDIX A:

REFERENCE DATA FOR LEVEL E LINKAGE EDITOR

This section contains reference informa-
tion, including linkage editor conventions,
tables, and record formats, for the 15K and
18K level E linkage editor.

Note: The I/0 conventions and record for-
mats for 1linkage editor E and linkage
editor F are the same.

INPUT CONVENTIONS

Input modules (object or 1locad) to be
processed in a single execution of 1linkage
editor must conform with a number of input
conventions. Violations of the following
rules are treated as errors by linkage
editor:

e All text records of a control section
must follow the ESD record containing
the SD or PC entry that describes the
control section.

e The end
marked by an end record (END in
modules, LAST in load modules).

of every input module must be
object

e Each input module may contain only one
no-length control section (a control
section whose length field in the SD-

or PC-type ESD entry that describes it
contains zeros). The length must be
specified on the END record of any
module that contains a no-length con-
trol section.

e After processing the first text record
of a no-length control section, linkage
editor will not accept a text record of
a different control section within the
same input module.

e Any RLD item must be read after the ESD
item to which it refers; if it refers
to a label within a different control
section, it must be read after the ESD
item for that control section.

e The language translators must gather
RLD items in groups of identical posi-
tion pointers. No two RLD items having
the same P pointer can be separated by
an RLD item having a different P
pointer.

Appendix A:

Reference Data For Level E Linkage Editor

¢ Each record of text® and each LD- or
LR-type ESD record must refer to an SD
or PC entry in the ESD.

® The position pointer of every RLD reco-
rd must point to an SD- or PC-type
entry in the ESD.

e No LD or LR may have the same name as
an SD or CM.

e All SYM records must be placed at the
beginning of an input module. The ESD
for an input module containing test
translator statements must follow the
SYM records and precede the TXT
records.

e Linkage editor accepts TXT records that

are out of order within a control
section, even though 1linkage editor
processing may be affected. TXT reco-

rds are accepted even though they may
overwrite previous text in the same
control section. Linkage editor dJdoes
not eliminate any RLD records that
correspond to overwritten text.

e During a single execution of 1linkage
editor, if two or more control sections
having the same name are read in, only
the first control section is accepted;
the subseguent control sections are
deleted.

* Linkage editor interprets common (CM)
ESD items (blank or with the same name)
as references to a single control sec-

tion, whose length is the naximum
length specified in the CM items of
that name (or blank). No text may be

contained in a common control section.

e Fithin an input module, linkage editor
does not accept an SD- or PC-type ESD
item after the first RLD item is read.

To avoid unnecessary scanning and
input/output operations, input modules
should also conform with the following

1A common (CM) control section cannot con-
tain text or external references.

90.1

conventions. Although violations of these
rules are not treated as errors, compliance
with them will improve the efficiency of
linkage editor processing.

Within an input module, no LD or SD
should have the same name as an ER.

Within an input module, no two ERs
should have the same name.

Within an input module, TXT records

Appendix A:

should be in the order of the addresses
assigned by the 1language translator.
(If TXT records are not in address
sequence, each reorigin operation may
require additional linkage editor proc-
essing time.)

RECORD FORMATS

Following are the record formats pro-
duced during linkage editor processing.

Reference Data For Level E Linkage Editor 91

RECORD FORMATS - LEVEL E

The following are the card image load module record formats for the 1level
editor.
SYM Input Record (Card Image)
]l l 2-4 I 5-10 11,12| 13-72 73-80

Not used
TESTRAN data
- Number of bytes of TESTRAN data
— Blank

T SYM
= 12-9-2 (0000 0010)
ESD Input Record (Card Image)
lIJ 2-4 ! 5-10]1L12b3J4h5J6‘ 17-72 ' 73-80

| |

|

! —- ESD Data -- see below
! Blank if all ESD items are LD
|

!

!

ESD IDENTIFIER of first ESD item (other than LD)

Blank
—— Number of bytes of ESD data

~ Blaak

- £SD
— 12-9-2 (0000 0010)

T
-8]9!10—12 ‘13! 14-]6]

Length of control section {if type is: SD,PC, CM)

Identifier of SD entry containing name
Blank if type is ER

= Length of pseudo-register (PR)

== Blank - Alignment Factor for type PR

-------- 24 bit address {SD,PC, LD, LR)

L Type - Hex (00=SD,01-LD, 02-ER, 03=LR, 04- PC,05=CM, 06-PR)

— Ncme -~ when type is: SD,LD,LR,ER,CM, PR

92

L Not used

E

linkage

Text Input Record (Card Image)

|I I 2-4 IS’ 6-8 \9-]0_%1,]2]]3,14|15,16l 17-72 ‘ 73-80 J

I——Text data (machine language code) ‘ Not d
R of use

ESD Identifier of SD for control section of this text
Blank
Number of bytes of text data

Blank

L——24 bit address of first byte of text data

— Blank

L 1xt

L—12-9-2 (0000 0010)

Appendix A: Reference Data For Level E Linkage Editcr 93

RLD Input Record (Card Image)

l] l 2-4 J 5-10 l]]-lZl 13-16 I 17-72 | 73-80
|_ RLD data - see below [— Not used
Blank
Number of bytes of RLD data
Blank
- rp

....... 12-9-2 (0000 0C10)

!—172 I3,4 ‘5 6,7,8 | RLD data item

L

Flag field == (TTTTLLSTn)
T TTTT=type
0000=non-branch
0001=branch
0011=pseudo register cumulative length
LL=length of address constant
01=2 bytes
10=3 bytes
11=4 bytes

Ass:gned cddmss of address constant

S=Direction of relocation
O=positive (+)
1=negative (-)
Tn=type of next RLD item
O=next RLD item has a different R or P
pointer; they are present in the next item.
1=next RLD item has the same R and P point-
ers, hence they are omitted.

——Position pointer (P) - ESDID of SD for control section that contains the address constant

Zero (00) if type=PR cumultative length

I]I 2-4 ISI 6-8 I 9-14 I15,16| 17-28 [29-32 33-80
I‘“ Not used
Control section length for control section whose length was not specified
Blank in SD ESD item. Byte 29 is binary zero if length is present.
ESDID of SD item for this control section that contains the address specified in bytes 6-8.
— Blank
'— 24 bit address of entry point (optional)
L Blonk

- END

- 12-9-2 (0000 0C10)

94

END Input Record - Type 2 (Card Image)

l] ’ 2-4 I 5-16 17-24 l 25-28 ‘ 29-32 l 33-80
Not used
Control section length for control section whose length was not specified
in SD ESD item

“— Blank

L— Symbolic entry point name (optional)

—— 12-9-2 (0000 0010)

Appendix A: Reference Data For Level E Linkage Editor 95

SYM Record - (Load Module)

sl s

SYM data and ESD data (ESD type SD, CM and PC items) - (maximum of 240
bytes)

|
I
{

|\i~— Count - ir bytes, of SYM and ESD data (2 bytes)

—Sustype - specifies information for TESTRAN - (1 byte)
T 1000 0000 - this SYM record contains ESD items (SD, PC or CM) trom
a load module that was not "under test". The test
option was not specified when it was link edited.
000C 0CO00 - this SYM record is not the above type.

L Identification - specifies this is a SYM record -~ 0100 0000 (1 byte)

CESD Record - (Load Module)

IO] 1-3 SS up to 240 bytes of ESD data

4,5 |6,7| 8-247

ESD data - for detailed information see below.

Count - in bytes, of ESD data (2 bytes)

——ESDID of first ESD item (2 bytes)

*——Spare - 3 bytes of binary zeros

L~ |dentification -- 0010 0000 -- (1 byte)

CESD Data (Load Module)

ERE

10-12 \]3[14-16 l

L ID/length - length (3 bytes), when type is: SD, PC, CM or PR
ID (2 bytes), when type is LR
Zero (3 bytes), when type is ER or Null

Segment number - in which this symbol appears. Zero when type is ER or Null (1 byte).

Address - linkage editor assigned address of this symbol. Zero when type is ER or Null (3 bytes).
——Type - (1 byte) Section definition (SD) - hex 00
T Label reference (LR) - hex 03
Private code (PC) - hex 04

Private code rmarked delete
(ENTAB and SEGTAB control sections) - hex 14

Common (CM) - hex 05

Null - hex 07

External reference (ER) ~ hex 02

Pseudo register (PR) - hex 06
~—Symbol - The eight character external name - Zero when type is Null.

96

Scatter-Translation Record

iOl 1 ‘2—3 l 4-1023 Sg Up to and including 1020 bytes
—— Data - may contain translation table, translation table and scatter table or scatter table only
——Count =~ in bytes, of data field
—Zero - one byte of binary zeros
“—Identification - identifies this as a scatter~translation record - bit configur-~

ation is; 0001 0000

Translation Table

LIPS TP

Padding (2 bytes) - if necessary, toforce full-word boundary alignment of scatter table.

Pointer (2 bytes) - to the scatter table entry that contains the address of the
control section containing this CESD entry.
Number of translation table entries = number of CESD entries +1.
Pointer will be zero if its corresponding CESD entry is not
SD, PC, CMor LR.

——Zero - 2 bytes of binary zeros

Scatter Table

I NN N Y N I

Assigned address (4 bytes) - of a control section (SD, PC or CM)

Zero - 4 bytes of binary zeros

Translation Table and Scatter Table

T3

[nfre e[t Srdnlef s [[|5 [|

Scatter data

Padding (2 bytes) if necessary to align scatter table to a full-word boundary.

Translation data

Appendix A: Reference Data For Level E Linkage Editor

97

Control Record - (Load Module)

}O! 1-3 l4-5|6-7| 8-15 , | J

‘— - Length of text record and/or length of control section - specifies the

length of the control section (in bytes) to which the text in the

following record belongs, or the number of bytes of a control

section contained in the following text record (2 bytes)

——" CESD entry number - specifies the composite external symbol dictionary entry that

contains the control section name of the control section of which this text is a part (2 bytes)

— Channel Command Word (CCW) - that could be used to read the text record that follows. The data address field contains
the linkage editor assigned address of the first byte of text in the text record that follows The count field contains the
length of the succeeding text record.

— Count - contains two bytes of binary zeros.

—— Count - in bytes, of the control information (CESD I, length of control section) following the CCW field. The
count is always 4 bytes when processed by the level E linkage editor.
L Spare - contains three bytes of binary zeros

— {dentification - specifies that this is: (1 byte)
e A control record = 0000 0001
o The control record-that precedes the last text record of this overlay segment = 0000 0101 (EOS)

o The control record that precedes the last text record of the module = 0000 1101 (EOM)

98

Relocation Dictionary Record - (Load Module)

0| 1-3 l 4,5 | 6,7| 8-15 16-255 S() Record length can be between 24 and 256

— RLD data -~ see below

" Spare - contains 8 bytes of binary zeros

—— Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

— Count - contains two bytes of binary zeros

'— Spare - contains three bytes of binary zeros

L— Identification - specifies that this is: (1 byte)

o A relocation dictionary record = 0000 0010
e The last record of the segment = 0000 0110
o The last record of the module - 0000 1110

RLD Data

[e T a <] % [l o [ele el o [o]e]e[]

Address - linkage editor assigned address of
the address constant (3 bytes)

Flag = (1 byte) When byte format is xxxxLLST,
T specifies miscellaneous information as follows:
xxxx specifies the type of this RLD item (address constant).
0000 -- non-branch type in assembler language, DC A (name)
0001 -~ branch type (in assembler language, DC V (name)
0010 -~ pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this address constant is not to be relocated because it refers to an unresolved symbol .
LL specifies the length of the address constant.
01 -~ two byte
10 -~ three byte
11 == four byte
S specifies the direction of relocation.
0 -- positive
1 -- negative
T specifies the type of the next following RLD item.
0 -~ the following RLD item has a different relocation and/or position pointer.
1 =~ the following RLD item has the same relocation and
position pointers as this and therefore is omitted.
— Position pointer - contains the entry number of the CESD entry (or translation table entry)
T that indicates which control section holds the address constant (2 bytes).

— Relocation pointer - contains the entry number of the CESD entry (or translation table entry) that indicates which symbol value
is to be used in the computation of the address constant's value (2 bytes).

Appendix A: Reference Data For Level E Linkage Editor 929

Control and Relocation Dictionary Record - (Load_ Module)

Pfrcafesfer] es [[1 [| %]

Address

——Flag

—— Address (3 bytes)

—Flag (1 byte)

——Posizion pointer (2 bytes)

—— Relocation pointer (2 bytes)

‘— Channzal Command Word (8 bytes)

—— Count, in bytes, of RLD information (2 bytes)

—— Count, in bytes, of control information following the last RLD address field.
The control information contains the 1D and length of controf sections in the
following text record (2 bytes).

~Spare (3 bytes)

dentification (1 byte) - specifies that this record is:
T e A control and RLD record - 00000011 - (it is followed by a text record)
e A control and RLD record that is followed by the last text record of a segment - 0000 0111 (EQS)
e A control and RLD record that is followed by the last text record of a module - 0000 1111 (EOM)

Note: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record.

The record length varies from 20 to 260 bytes in the level E linkage editor

100

= Length of control section
or text record (2 bytes)
“CESD entry number (2 bytes)

Form Y28-6610-2
Page revised 7/23/69 by TNL ¥Y28-6400

REFERENCE DATA FOR INITIAL PROCESSING -~ 15K AND 18K LEVEL E

The following tables pertain to initial processing in the level E linkage editor.

All Purpose Table

0 PDSEI 232 DLKT { CHESD
8 PDSE2 PDSE3 PDSE4 240 SELST TNLS2
16 PDSES PDSE6 | PDSE7 | PSDES PDSE9 248 RNLS2 TTRLIST
PDSED
24 | (contin- PDSET0 PDSE11 PDSE12 256 CUTRLD RLDBI
ved)
PDSETZ :
. A
32 |(contin- PDSE13 PDSE14 PDSE15 PDSE16 | 264 INRLD _ BITMAP
ved) (Ervor Logging Map
PDSET4 o
40 |(comtin- PDSE17 PDSE18 272 BITMAP LINECNT HISEVY
ve (continued)
48 PDSE18 REGSA 280 INCBRKPT CRRTINCL
(continued)
|
REGSA .
5622 Gs 288 ENCDX ENTIX ENRIX ! ENT2X
(continued) i
U —
. i
120 REGSA 10CT 296 ENR2X ENTOX ENCLX | ENDIX
(continued) !
128 locr 304 ENSTX BUFSIZ HESD
(continued)
136 1OCT 312 ENRLDIX ENRLD2X ENELTX ENSPX
(continued) !
10CT
144 (continued) APTO | APTT | APT2 | APT3 320 SAVATS APTSWS EPSM
. -1 i
152 CTTR CSNO CRNO 328 EPSM ENTIC | ENRIC !
(continued)
- - —
|
160 SLNTB PRAL 336 ENTIC ENIRC ENTOC | ENCLC
|
168 FLCD RCCE 344 ENSIC ENASC ENDTC | ENCDC
= . !, .
176 RCCB ALCB 352 ENELTC ENT2C | ENR2C L ENSPC
; N {
184 OVCMBGAD SGTI 360 SYSRTN :
192 CLLT TNTI 368 3T SPACES =z
200 RNTI LSTS 440 [EWLCSCD ssl
208 RECNT LOGAREA 448 LIBNAME
216 SYINS ERDIG 456 MAXBLKSZ APT000 HIARBIT
224 X710 ALAS 464:: DCB'S :::
824 APTEXLST
432 APTXLSTI APTXLIST
840 APTREG 3 i HIARADD

Appendix A:

Reference Data For

Level E Linkage KEditor

101

Explanation of APT Entries

i

| PDSEL
| PDSE2
| PDSE3

| PDSEY
| PDSES
| PDSE6

|
| PDSE7

PDSES8

{ PDSE9

| PDSE10
| PDSE11
| PDSE12
| PDSE13
| PDSE14
| PDSEL5
| PDSE16
| PDSE17

|
| PDSE18

102

Member or alias name of module being created.

Relative disk address (TTR) of module on SYSLMOD.

C - byte - see partitioned organization directory record, alias indicator
and miscellaneous information.

During second pass processing, PDSE2 and PDSE3 contain the end address of
the RLD record currently in the second pass RLD input buffer.

Relative disk address (TTR0O) of first text record.
Relative disk address of note list or scatter-translation recori.
"L" byte, number of TTRs in note list if present.

Module attributes Initial
Value

Bit 0 - Reenterable 0

Bit 1 - Reusable 0

Bit 2 - Overlay 0

Bit 3 - Test 0

Bit 4 - Only loadable 0

Bit 5 - Block/scatter 0

Bit 6 - Executable 1

Bit 7 - 1 Text record, no RLD 0

Bit 0 - Compatibility - 0

Bit 1 - Origin of 1st text 1
record is zero.

Bit 2 - Assigned entry point 1
is 0

Bit 3 - Module contains RLD 0
items

Bit 4 - Module can be repro- 0
cessed

Bit 5 - Module does not con- 0
tain SYM records

Bit 6 - Spare 0

Bit 7 - Module is refreshable 0

Total contiguous main storage reguirement of module.
Length of first text record.

Entry point address.

Assigned origin of first text record.

Length, in bytes, of scatter list.

Length, in bytes, of translation table.

ESDID of the first text record.

ESDID of control section containing the entry point.
Entry point of main member name.

Member name of module.
During input processing, word 1 of PDSE18 contains the CESD address of the
control section with no length given.
During second pass processing, PDSE18 is used in the following manner:
Word 1 Address of next free entry in RLD output buffer.
Word 2 Address of address constant within the text buffer.

W

Register save area for I0S

Input/Output Control Table
During second pass processing, IOCT contains the following data:
Words 1-3 = Register save area (reg. 13-15)

Word 4 = Address of next available entry in ENTAB

Word 4 = Address of next available entry in ENTAB RLD buffer.

Word 5 = Address of current entry in the Entry List.

Word 6 = Address of the RLD record in the RLD input buffer that is

currently being processed.

(Continued)

|
|
-t

b o ot e e e e s e e e e e s e e o S e e e, o e S S —— — — . — {— — ot S s S st ST i S s . e, o, e St e, S e s e o S s, S o i o e, e

Explanation of APT Entries (Continued)

________ = — e e N S

|APTO | All Purpose Indicators

I | Bit 0 - NCAL

| | Bit 1 - XREF

| | BIT 2 - MAP

| | Bit 3 - LET

| | Bit 4 - LOG

| | Bit 5 - XCAL

| | Bit 6 - Input record is text or RLD.

| | Bit 7 - A library card has been read

I |

|APT1 | All Purpose Indicators

| | Bit 0 - More include input to ccme

| | Bit 1 - Auto library call in operation

| | Bit 2 - Object or load module.

| | Bit 3 - Delete indicator.

| | Bit U4 - Entry point has been received.

| | Bit 5 - Symbolic or absclute entry point.

| | Bit 6 - Entry card has been received.

| | Bit 7 - ESD-Write indicator.

I I

|APT2 | All Purpose Indicators

| | Bit 0 - Length received in END item.

| | Bit 1 - No length received in the SD record.

| | Bit 2 - SYM records in load module.

| | Bit 3 - Status indicator received.

] | Bit 4 - Include processing previously initiated.

| | Bit 5 - Input/Output overlap indicator.

| | Bit 6 - In module indicator

| | Bit 7 - Control statement continuation

I I

|APT3 | All Purpose Indicators

| | Bit 0 - End of file.

| | Bit 1 - Name card received

| | Bit 2 - End of input

| | Bit 3 - Stow as a replacement

| | Bit 4 - Split address constant to be output.

| | Bit 5 - More RLDs to be processed

| | Bit 6 - Current RLD for split address constant found.

| | Bit 7 - SYSLIB data set is open.

| I

|CTTR | TTRO of first CESD record on SYSLMOD, if MAP or XREF is specified.

|CSNO | Current segment number.

| CRNO | Current region number.

] | During second pass processing, CRNO contains the last ID for the current

| | segment.

| SLNTB | Address of segment length table

| PRAL | Pseudo register accumulative length.

| FLCD | Address of first deleted CESD entry.

| RCCE | Address of end of replaces/change chain.

| | During second pass processing, RCCE is wused as a work area to perform

| | address constant alignment.

| RCCB | Address of beginning of replace/change chain.

| | buring second pass processing, RCCB contains the address of the address

| | constant in the work area.

| ALCB | Address of beginning of Alias chain.

| | During second pass processing, ALCB contains the address of the next ENTAB

| | entry in. the HESD.

| OVCMBGAD| Address of beginning of overlay chain

| | buring second pass processing, OVCMBGAD contains the address of the RLD note

| | list entry for the currently processed RLD input record.

|SGT1 | Address of SEGTAB1

| CLLT | Address of calls list.

| | During second pass processing, CLLT contains the maximum size of the RLD

| | input buffer.

L L _ e e
(Continued

Appendix A: Reference Data For Level E Linkage Editor 10

)

3

kxplanation of APT entries (Continued)

| SAVATS Attribute save area

!
|APTSWS All purpose taple switches
Bit 0-2 - Spare
Bit 3 - Linkage editor E=1, linkage editor F=3
Bit 1 - Bit map processed - Initial value =0
Bit 5
Bit
Bit

- Linkage editor input received - Initial value =0
SYM received - Initial value =0
- ESD received - Initial value =0

~N O\ U
!

i

|

i

i

|

{

|
|EPSM Entry point symbol or address

i During second pass processing, EFSM contains the following data:

| Bytes 1-4 = Address of next ENTAB entry to be built.

i Byte 5 = Segment numper of the next segment that requires an ENTAB to be
] created for it.

| Byte 6 = Not used.

§ Byte 7,8 = Length of address constant being processed.

|

{ENT1C
|ENRI1C
{ENITC
JENIRC

Current number of bytes in text ncte list 1

Current number of bytes in RLD note list 1

Current number of bytes in text I/0 ccntrol takle

Current number of bytes in RLD I/0O control table

During second pass processing, ENITC and ENIRC contains the 1linkage editor
assigned address of current text record.

o e e 1

{TNT1 | Address of text note list 1 |

|RNT1 | Address of RLD note list 1 |

|LSTS | Last segment in each regicn |

| RECNT | Address of relocation constant takle or renurkering table. |

i { During second pass processing, RECNT contains the buffer relocation con- |

| | stant. |

{LOGAREA | Address of 32 byte error logging area |

|SYSINB | Address of object mcdule buffer |

| ERDIG | Address of error log routine

{TXTIO | Address of text I/0 table

{ALAS | Address of alias takle

|DLKT | Address of delink takle

{CHESD | Address of composite ESD

| SELST | Address of second pass entry list

{ TNLS2 | Address of Text Note list 2

jRNLS2 | Address of RLD Note list 2 |

JTTRLIST | Address of TTR list |

JOUTRLD | Address of seccnd pass output RLD buffer

{RLDB1 | Address of ENTAB buffer

{ INRLD | Address of second pass input RLD kuffer

iBITMAP | Bit switches used tc log error messages

JLINECNT | Line count of lines printed on SYSPRINT |

JHISEV | Highest severity message

} INCBRKPT| Address of breaking point ir Include Chain

ICRRTINCL| Address of currently inciuded ESD item

{ ENCDX | Maximum number of entries in CESD/HESD

JENT1X | Maximum numpber of entries in text note list 1

JENR1X | Maximum number of emntries in RLD note list 1

{ENT2X | Maximum numper of entries in text note list 2

{ENR2X | Maximum number of entries in RLD note list 2

{ ENTOX | Maximum number of entries in text I/0 tacle

| ENCLX | Maximum number of entries in calls list |

|ENDTX | Maximum number of entries in delink takle |

FENS1X | Maximum number of segments |

{BUFSIZ | Size of load module input buffer

{HESD | Address of HESD |

JENRLD1X | Maximum size of first pass RLD buffer |

|ENRLD2X | Maximum size of second pass input RLD tuffer |

|ENELTX | Maximum number of entries in second pass entry list

jENSPX | SEGTAB ID |
I |
| [
I I
I I
| |
I |
| |
I I
I |
I |
| |
I [
| I
| I
| |
! I
I I
| |
| |
| I
! |
| |
| !
|
1

(Continued)

104

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Explanation of APT Entries (Continued)

r Rl h
ENTOC	Current number of bytes in text I/0C table
ENCLC	Current number of bytes in calls list
	During second pass processing, ENCLC contains the last R pointer obtained
	from the RLD buffer.
ENS1C	Current number of entries in SEGTAEl
I	During second pass processing, ENS1C contains the current segment number.
ENASC	Current number of entries in alias table
ENDTC	Current number of entries in delink table
	During second pass processing, ENDTC contains the next multiplicity number
	of the text to be read in for processing.
J ENCDC	Current number of entries in CESD/HESD
ENELTC	Current numoer of entries in second pass entry list
ENT2C	Current number of entries in text note list 2
	During second pass processing, ENT2C contains the last R pointer that was
	placed into the RLD output buffer.
ENR2C	Current number of entries in RLD note list 2
ENSPC	Highest segment number of segment containing text
SYSRTN	Save area for register 13 and 14 for return to job management
SPACES	Save area
	IEWLEDEl = SPACES+32
	IEWLEDE2 = SPACES+52 1
	During second pass processing, SPACES contains the following data:
	Words 1,2 = Address and 1loop counter for next RLD note list entry to
	process for current text.
	Word 3 = Address of next available byte in the RLD input buffer.
	Words U4-7 = Temporary save area for BSAM disk address or track balance.
	Word 8 = Address of end of ENTAB RLD buffer.
	Words 9-13 = DECB for text buffer 1.
) Words 14-18 = DECB for text buffer 2.	
IEWLCSCD	Address of second pass processor
Ss1	System status indicator
FFCADR	Highest address retained by allocation routine
LIBNAME	Name of library for automatic library call
MAXBLKSZ	Maximum block size for linkage editor E (80 byte)
APTO000	SYNAD for printer
HIARBIT	Storage hierarchies have been specified if high order byte contains X'01°.]
DCBs	DCBs for linkage editor devices.
APTREG3	Save area.
HIARADD	Hierarchy table address.
1 L 4

Appendix A: Reference Data For Level E Linkage Editor 105

Main Storage Allocation Table

Used by Allocation Processor

E Y YA S O

1|2|3{4,516,7

Normal total weight ~ 582 (4 bytes)

Normal minimum main storage - 3309 bytes
(4 bytes)

Overlay total weight - 603 (4 bytes) —

Overlay minimum main storage - 3605 bytes ___|
(4 bytes)

— Minimum size - The minimum number of bytes of main storage required for this table (2 bytes).

“— Weight - The factor used to allocate extra main storage to enlarge the table. It specifies how many
bytes will be added to this table for every 582 bytes (or 603 bytes, with overlay} which become available (2 bytes).

— Number of bytes per entry - The number of bytes per entry for this table (1 byte)

L. Number of Entries-156 = The number of entries value for this table found in the All Purpose Table, reduced by 156 (1 byte)

L— Address=156 - The address assigned to this table (buffer or area) found in the All Purpose Table reduced by 156 (1 byte)

*— Indicators = (1 byte)

Bit 0 - Table needed to process overlay modules only.
Bit 1 - Table needed during first pass.

Bit 2 - Table needed for intermediate processing.

Bit 3 - Table needed during second pass.

Bit 4 - Table requires double-word alignment.

Bit 5 - Table requires word alignment.

Bit 6 - Table has a maximum size of 240 or 64 bytes.
Bit 7 ~ Table has a zeroeth entry (Prefix).

106

Minimum Table Area for Processing Non-Overlay Programs

INITIAL AND INPUT PROCESSING] INTERMEDIATE PROCESSING SECOND PASS PROCESSING
O e e
Text /O Table == 108 bytes
108
Delink Table =- 120 bytes
228 .
* Logout Area -- 32 bytes
264 e
Object module buffer Alias Table == 50 bytes
314 80 bytes T
344
Half ESD =-- 656 bytes
* —e
976 CESD -- 1280 bytes
Text Note List 2 == 180 bytes
1156]
RLD Note List 2 == 224 bytes
1380
Input RLD Buffer
Unused ** 244 bytes
1624 E—
Text Note List 1 == 45 bytes
1669 Output RLD Buffer
RLD Note List 1 =- 56 bytes 260 bytes
1725
1884 Renumbering and Relocation Constant Tables
324 bytes
2052

* The byte number below is not consecutive because of the necessity for proper boundary alignment.
** If an additional 9,312 bytes are available, there is no unused space during intermediate processing.

Expansion of Table Area Into Extra Available Main Storage (Non-Overlay Processing)

0 INITIAL AND INPUT PROCESSING INTERMEDIATE PROCESSING SECOND PASS PROCESSING
Text 1/O Table -- 48/582 of any extra available main storage above minimum
48 ——
Delink Table -- 30/582
78 —
Half ESD -~ 176/582

24 CESD -- 352/582

-~ 352/ TEXT Note List -~ 80/582
334
222 Unoead RLD Note List - 112/582 o

TEXT Note List 1 -- 20/582

466 . Unused during second pass
194 RLD Note List 1 -- 28/582 processing

Renumbering and Relocation Constant Table -- 88/582
582

Appendix A: Reference Data For Level E Linkage Editor 107

Minimum Table ?frea for Processing Overlay Programs

108
140
264

296

346
376

1002
1182

1406

1650
1656

1701
1757

1910

*

2084
2096

2220
2304

2344

x

108

INITIAL AND INPUT PROCESSING INTERMEDIATE PROCESSING

SECOND PASS PROCESSING

Text 1/O table -~ 108 bytes

SEGTABI -~ 32 bytes

Delink table =~ 120 bytes

Logout area ~- 32 bytes

80 bytes

Object Module Buffer Alias Table -- 50 bytes

Half ESD ~- 656 bytes

CESD -- 1280 bytes

Text Note List 2 -- 180 bytes

RLD Note List 2 == 224 bytes

Unused **

Input RLD Buffer - 244 bytes

Text Note List 1 == 45 bytes

RLD Note List T == 56 bytes

Output RLD Buffer ~ 260 bytes

Renumbering and Relocation Constant Tables -- 324 bytes

Entry List == 186 bytes

Calls List == 220 bytes

TTR List - 124 bytes

Unused

ENTAB RLD Buffer -~ 124 bytes

The byte number below is not consecutive because of the necessity for proper
boundary alignment.

17 an additional 10,251 bytes are available, therz is no unused space during
intermediate processing.

Expansion of Table Area Into Extra Available Main Storage (Overlay Processing)

48

49

79

255

335
431

447

467

495

583
603

INITIAL AND INPUT PROCESSING

INTERMEDIATE PROCESSING

SECOND PASS PROCESSING

Text 1/O Table =~ 48/603 of any extra available main storage above minimum requirements

SEGTABI -- 1/603

Delink Table -- 30/603

CESD -- 352/603

Half ESD -- 176/603

Text Note List 2 -- 80/603

RLD Note List 2 -- 112/603

Text Note List 1 -- 20/603

Entry List == 6/603

TTR List —- 4/603

RLD Note List 1 -- 28/603

Renumbering and Relocation Constant Table
88/603

Unused during second pass processing

Calls List == 20/603

ENTAB RLD Buffer -~ 4/603

Appendix A: Reference Data For Level E Linkage Editor

109

Table of Buffer Sizes and Table Sizes

Present in: Size (in bytes
Table Name 8:,';\(S;dfy gr)::f;/ Weight I'st Int 2nd Prefix Align Min :);\/\o:
Coding Pass Proc Pass ’ ’
Alias Table No 5 10 0 No Yes Yes No Byte 50 50
Calls List Yes 20 2 20 Yes Yes No No Word 220 *
Composite ESD No 11 16 352 Yes No No Yes Dblwd 1280 *
Delink Table No 3 5 30 Yes Yes Yes Yes Byte 120 *
ENTAB RLD Buffer Yes 16 1 4 No No Yes No Word 124 240
Entry List Yes 14 6 6 No No Yes No Byte 186 *
Error Log Area No 4 1 0 Yes Yes Yes No Word 32 32
Half ESD No 7 8 176 No Yes Yes No Dblwd 648 *
Half ESD Prefix No 6 1 0 No Yes Yes No Dblwd 8 8
Input RLD Buffer No 12 1 0 No No Yes No Word 244 244
Object Module Buffer No 10 1 0 Yes No No No Byte 80 80
Qutput RLD Buffer No 13 1 0 No No Yes No Word 240 260
Relocatable Constant Table No 19 4 88 No Yes No Yes Word 320 *
Renumbering Table No 19 4 88 Yes No No Yes Word 320 *
Renumbering Table Prefix No 18.5 4 0 Yes Yes No No Word 4 4
RLD Note List 1 No 18 7 28 Yes Yes No No Byte 56 *
RLD Note List 2 No 9 7 112 No Yes Yes No Byte 224 *
SEGTABI Yes 2 1 1 Yes Yes Yes Yes Byte 32 64
I Text 1/O Table No 1 3 48 Yes Yes Yes No Byte 108 *
Text Note List 1 No 17 5 20 Yes Yes No No Byte 45 *
Text Note List 2 No 8 5 80 No Yes Yes Yes Byte 180 *
TTR List Yes 15 4 4 No No Yes Yes Word 124 *
* Maximum is determined by availability of main storage

110

REFERENCE DATA FOR INPUT PROCESSING =-- LEVEL E

Alias Table

Built by: Entry Processor
Referred to by: Final Processor

[|| [] || || |]

CESD entry number - present only if symbol is one that is present in the CESD and is type
SD or LR. This field contains zero for all other symbols (2 bytes).

Symbol - the eight-character alias name (8 bytes)

calls List

as built by RLD processor

HANEEN

5 ANEEUEANEE

s
\- {— 2 bytes of binary zeros

Relocation pointer - points to the referred to symbol in the CESD (types SD, LR, ER and CM) (2 bytes).

Relocation pointer (2 bytes)

L— Relocation pointer (2 bytes)

“— Position pointer - points to SD or PC in CESD that contains the references (V-constants) (2 bytes)

Calls List
As altered and used by ENTAB size determination (IEWLCENS)

|8P RRIO!PIRRRé SS P R‘R‘RlRBP‘RiRIZ
2 7

1
2 bytes of binary zeros
(End of chain indicator)

Chaining value - inserted by IEWLCENS -~ count, in bytes, o next chaining value (2 bytes)

Appendix A: Reference Data For Level E Linkage Editor 111

Composite External

Symbol Dictionary (CESD) -- Internal Format

The

tollowing

tables are produced during input processing in the level

the linkage editor.

Built by: ESD Processor and Contfrol Statement Processors
Modified by: Address Assignment Processor

L 97

’8] 9-11 l]

2[]3

14w’r

i

LIS

]

!

-Chain pointer/chain 10/

- -Subtype - ER
ER-Control cha
ER-Control repl

ER~-ddname
ER-Alias
ER-Overlay

ER~-Matched no
ER-Never call
ER-Delete
ER-Replace

(1 byte)

——Type - Section definition (5D) xxxx
- Label reference (LR) xxxx
Private cade (PC) XXXX
Common (CM) XXXX
Pseudo register (PR) XXXX
Null 0000
External reference (ER) xxxx
(1 byte)
NOTE: = Not applicable
—u‘g_y__mb_cil - the eight-character symbolic name (8 bytes)

/length - Chain pointer when the entry
type is: ER-Include w/pointer or an ER-ddname
that was extracted trom a LIBRARY control statement

nge
ace

ER-Control delete
ER-Control include w/ pointer
ER-Control include w/o pointer

call

0000
0011
0100
0101
0110
0111
0010

Chain ID when the entry type is:
ER-Library (the symbol was extracted from

Length of control section for type:
SD, PC, PR, or CM (2 bytes)

ER-Unmatched library member
ER-Matched library member
ER-Unmatched no call

Subclassification -

Delete xxx1
Replace xxx1
Insert xxIx
Chain x1xx
Map Txxx

KXXX
XXXX
XXXX
XXXX
XXXX

a LIBRARY control statement),

0000
0000
0000
1000
0000
0000
0000
0000
0000
0010
0011
0100
0101
0110
1000
0000

—Segment number - this symbol appears in (1 byte). When type is
PR, this byte contains the alignment value (See Half ESD).

L—Chain address/reverse chain ID - used to create a chain of CESD entries (3 bytes).

w
i

version of

Normal Combination of Internal CESD Types

CESD Entry Type Type Field Chain Address/ Segment ER Subtype ddname Pointer/
Chain ID Number Chain ID/Length
(byte 8) (bytes 9-11) (byte 12) (byte 13) (bytes 14-15)
Section Definition xxxx x000 T to 64 Length of control section
Private Code xxxx x100 1 to 64 Length of control section
Common xxxx x 101 1to 64 Length of common area
Pseudo Register xxxx x110 Alignment Length of pseudo register
value (1)
External Reference xxxx 0010 Hex 00 or 80 0000 0000
Label Reference xxxx x011 1 to 64 CESD entry no. of
SD or FC (ID)
NULL 0000 0111
Replace xxx] Xxxx 0000 0000
Insert xx X Xxxx
Chain XXX XXXX
Map TxxX XXXX
Delete xxx 1 xxxx 0000 1000
ER - Unmatched Lib- 0000 0010 Reverse chain ID 0000 0010 CESD entry no. of
rary Member Name next item (ID)
ER - Matched Library 0000 0010 Reverse chain 1D (2) 0000 0011 CESD entry no. of
Member Name next item (ID)
ER - Unmatched No 0000 0010 0000 0100
Call Name
ER - Matched No Call 0000 0010 0000 0101
ER - Never Call 0000 0010 0000 0110
ER - Overlay Control 0000 0010 Address of next 1001 0000
Statement item in the chain
ERE - Alias Control 0000 0010 Address of next 1010 0000
Statement item in the chain
ERE - ddname from 0000 0010 1011 0000 Forward chain
Library or Include Statement PTR (Library only)
ER - Include Control 0000 0010 Address of next 1100 0000
Statement w/o Pointer item in the chain
ER - Include Control 0000 0010 Address of next 1101 0000 Pointer to li-
Statement with Pointer item in the chain brary's ddname
ER - Replace Control 0000 0010 Address of next 1100 0000
Statement (3) item in the chain
ER - Control Delete (4) 0000 0010 Address of next 1110 1000
item in the chain
ER - Change Control 0000 0010 Address of next 1111 0000
Statement (3) item in the chain

Alignment Value - Specifies boundary alignment

of the pseudo register.
00 = byte alignment

01 = halfword alignment
03 = full-word alignment
07 =double~-word alignment
BLDL has been issued for this member name if bit 64 is set to 1.
Two CESD entries are made for each Replace or Chaqge control statement,

one entry for each symbol.

This entry results from a Replace or Change control statement containing

only asingle symbolic name.

Appendix A:

Reference Data For Level E Linkage Editor

113

Delink Table

Built by: RLD Processor (Delink Routine),
Referred to by: Second Pass Processor, RLD Processor

L]

)

— Address - assigned to the symbol being deleted (3 bytes)

- CESD entry number (ID) - is the relocation pointer of an RLD item referring to the symbol that is
replacing the identically named symbol (or symbols) to be deleted. (2 bytes)

Downward Calls List

Built by and referred to by IEWLCENS routine

L] L

5

L[]

" Segment number - entries are one for one with those of the CESD. If a
T downward call is made to a symbol, the segment's number from
which the call is made is entered in the downward calls 1ist
at an entry corresponding to the ESDID of the symbol in the
CESD. The list is initially zero. (1 byte)

Renumbering Taple

Built by: ESD Processor
Referred to by: TXT, RLD, END and ESD Processor

ookl [11 11}

5

1

L

114

Type Subtype

Bits 567 Bits 01234
Section Definition - 000 Null - 000000
Label Reference - 011 Delete - 00010
External Reference~ 010 Replace - 00010
Private Code - 100 Chain - 01000
Common - 101 Insert - 00100
Pseudo Register - 110 Library - 70000
Nult - 1M

(1 byte)

'—~ Flag - to indicate whether the section definition (SD or PC) this entry corre-
T sponds to is present in the CESD (0000 0001), or that other CESD items
are dependent on its presence (0000 0010), or that a Delink Table entry
was created for this symbol (0000 0100). (I byte)

|

Relative Relocation Constant Table

Built by and referred to by Address Assignment Processor

L []

D) |]

Relocation Constant = (linkage editor assigned address)-(previously assigned address) of a
control section (SD, PC or CM) or a label reference (LR). The
entries are one for one with CESD, in true or complement form. Com-

plement form specified by binary ones in the high-order byte (4 bytes)

RLD Note List

Built by: RLD Processor
Referred to by: Second Pass Processor

L |

|)

Relative Track Address (TTR) - of this RLD record on SYSUTI.

Record length - the number of words of RLD data.
During Second Pass Processing:

Bit O is an 'In Core' indicator.
Bit 1 is a 'Processed’ indicator.

—— Lowest multiplicity - of the control section referred to by
the ID field, to which the RLD infor-

mation in this record pertains.

—— ID - the CESD entry for the control section {SD or PC)
that this RLD information pertains to.

Appendix A:

Reference Data For Level E Linkage Editor

115

Segment Length Takle

Built and referred to by Address Assignment Processor

L T 1] Sy T 1]

Appearance of table after assignment of control section addresses.
o

— Boundary Alignment Factor *(1 byte) - contains the low-order three bits
of the previously assigned address of the
‘ first control section of o segment.

Cumulative Segment Length (3 bytes) - in bytes, of control sections in this segment

TSI o

Appearance of table after segment addresses are determined.

~=—— - Segment Relocation Constant (3 bytes) - for the segment that corresponds to this entry

|
!
b Path Length (3 bytes) - in bytes, of this segment, including this segment and its ENTAB

thz first controf section of each segment are saved in the
high-order byte of the segment relocation constant field. These
biss are used to retain correct byte alignment when computing
the segment relocation constant. When the computation is
completed, the result will overwrite all three bytes of the
segment relocation constant field.

Text Input/Output Table

Built by: Text Processor
Referred to by: Second Pass Processor and Text Processor

HiNINE 5%

| 1]

i

]

CESD entry number (ID) - points to CESD entry that
- contains the section defini-

tion (SD, PC) for this control

section. (2 bytes)

Multiplicity number - of this piece of text.

(T byte)

Text Note List

Built by: Text Processor
Referred to by: Second Pass Processor

L1

5

Buffer displacement - location of this text record

relative to beginning of text

butfer (2 bytes).

Relative trac< address (TTR) - of this text record on SYSUTT (3 bytes)

Note: There is a one-to-one correspondence between entries of text input/output table
and the text note list.

116

|

l REFERENCE DATA FOR INTERMEDIATE PROCESSING -- LEVEL E

l The following table is produced during intermediate processing in the level E version
of the linkage editor.
Segment Table (SEGTAB)
Built by Intermediate Output Processor
TEST
. Address of Data Conirol Block (DCB) used to load module *
Indicator
Address of note list *
Last segment Highest segment no. Last segment Highest segment no.
numbeér of region 1 in storage-region 1 number of region 2 in storage-region 2
Last segment Highest segment no. Last segment Highest segment no.
number of region 3 in storage-region 3 number of region 4 in storage-region 4
Zero (Not used in the Fixed-Task Supervisor) *
(Not used in the Fixed-Tosk Supervisor) *
Previous segment * 7 Status
number for segment 1 ero Indicator
Previous segment Address of entry table entry (when caller S*C’f.US
number for segment 2 chain exists) * Indicator
Previous segment Address of entry table entry (when caller Status
number for segment N chain exists) * Indicator
< 4 bytes
TEST indicator -~ specifies that this module is "under test" using
TESTRAN. (Bit 1) Initialized by program fetch,
Highest segment no. in storage -- is initially set to 00 except for
region 1 which is initially set to 01 by linkage editor,
Status indicator ~- indicates the status of this segment with the
two last bits of the entry table address field as follows:
00 -- segment is in main storage os a result of a branch to the segment,
10 == segment is in main storage, no caller chain exists,
01 -- segment is not in main storage, but is scheduled to be loaded.
11 == segment is not in main storage.

The status indicator for segment 1 is initially
set to 10, all the rest are initially set to 11,

* set to zero by linkage editor

Appendix A: Reference Data For Level E Linkage Editor 117

Half External Symbol Dictiomnary

Built by: Intermediate Output Processor

Referred to by: Second Pass Processor

[one —¥
entry (8 bytes)

L— Relative Relocation Constant = not applicable to types ER, PR and Null (3 bytes)

L Segment Number* ~ segment in which this symbol appears. Segment number =
1 in non-overlay programs. (1 byte)

L Linkage Editor assigned address - of this symbol (absolute value of the address constant) (3 bytes)

L— Indicator-Type - Bit zero is not used. Bifs 1, 2 and 3 are used as an indicator field that applies to:
B T SD,PC - Bit 1 = 0 =~ this control section (SD or PC) does not have
the highest CESD entry number in this segment
=1 -- this control section (SD or PC) has the
highest CESD entry number in this segment
SD,PC or CM = Bit 2 = 0 -- relative relocation constant is a positive value
=1 == relative relocation constant is in
. complemented form
PC delete - Bit 3 = 1 =- indicates that this unnamed control section
is a SEGTAB or ENTAB.

Bits 4, 5, 6 and 7 are used to specify the entry type:
0000 = Section Definition (SD)
0010 = External Reference (ER) - all fields are zero except type
0011 = Label Reference (LR)
0100 = Private Code (PC)
0101 = Common (CM)
* 0110 = Pseudo Register (PR) - the segment number field contains a byte alignment value as follows:
0 = byte alignment
1 = half word alignment
3 = full word alignment
7 = double word alignment
0111 = Null = all fields are zero except type

High ID Table

Built and referred to by Intermediate Output Processor

l [] % RN

— CESD entry number - entries are in segment number order. Each
T 7 entry contains the highest CESD entry number
(ID) assigned to a section definition (SD or PC)
within that segment. (2 bytes)

Note: [f segment does not contain text, its corresponding entry contains zero.

118

| REFERENCE DATA FOR SECOND PASS PROCESSING -- LEVEL E

|

The following tables are produced during second pass processing by the level E versicn

of the linkage editor.

Entry List

Built by and referred to by Second Pass Processor

NN

)

| 1]

|

Address - linkage editor assigned address of the
ENTAB entry for this symbol (3 bytes)

Segment number ~ that will contain this ENTAB entry

— Half ESD entry number - corresponding to the CESD entry that

contained the referred to symbol

Entry Table (ENTAB)

Built by Second Pass Processor

}‘— one —.{
entry (6 bytes)

Unconditional branch to last Address of referred "to" seg Previous Caller
entry BC 15, DISP (15,0) to symbol number (zero initially)
Unconditional branch to last Address of referred "to" seg Previous Caller
entry BC 15, DISP (15,0) to symbol number (zero initially)
| | |
| I | l
| | | |
Unconditional branch to last Address of referred "to" seg Previous Caller
entry-BC 15, DISP (15,0) to symbol number (zero initially)
L 15, 4 (0,15) Loads GR15 with "from" Address of segment
SVC 43 the value of the ADCON BCR 15,13 seg no table (SEGTAB)

DISP -~ is the displacement, in bytes, of this entry from the last entry.
"to' segment number -~ is the number of the segment containing the symbol being referred to.
"from" segment number -~ is the number of the segment that contains this entry table,

Appendix A:

——— 2 bytes ——»‘4——2 bytes 4’}1—2 bytes ——#-——— 2 bytes——p-4—1 byte—

Reference Data For Level E Linkage Editor

¢——————— 3 bytes ——————

119

Text Table I

Built and referred to by Second Pass Processor

0-3 \ 4-7 ‘8,9|10]Hl 12-15 I 16-19 }

Text Table IT

L 1— Address of next free byte in output text buffer 1 (4 bytes).

Data Event Control Block - (DECB) - for text buffer (4 bytes),

— Indicators = (1 byte) Bit 0 ~ O = no more RLD items to be
processed for text now in buffer.
1 = RLD items are still to be
processed for text now in buffer.
Bit 1 - O = no more text to be processed
for this control section.
1 = more text to be processed
for this control section.
Bit 6 - 0 = no text present in buffer,
| = text present in buffer.
Bit 7 = 0 = not last input record in buffer 1.
1 =last input record in text buffer 1.

“—Multiplicity Number - of present record (1 byte).

L— Count - of bytes of text in text buffer T (2 bytes).

*——-End address+] of this text buffer (4 bytes).

--—--Starting address of this text buffer (4 bytes).

Built and referred to oy Second Pass Processor

I 0-3 l 4-7 8,9

0

H| 12-15 Ilé-l‘? !

L Address o‘fV next free byte in output text buffer 2 (4 bytes).

Data Event Control Block - (DECB) - for text buffer (4 bytes).

—Indicators - (1 byte) Bit O - 0 = not first text record of module.
1 = first text record of medule.
Bit 1 - 0 = not writing a text output record,
1 = writing a text output record
Bit 2 - 0 = not first record of a segment (output).
1 = first record of a segment
(Note: macro-instruction should be issued).
Bit 3 - 0 = Use BSAM tfo write out contents of text buffer.
1 = Use XDAP to write out contents of text buffer.
Bit 4 - 0 = Not a dummy write of text.
1 = Is a dummy write of text.
Bit 6 - 0 = no text present in buffer.
1 = text present in text buffer 2.
Bit 7 - 0 = not last input text record in buffer.
1 = last input text record in text buffer 2.

— Moltiplicity Number - of present record (1 byte).

—— Count - of bytes of text in text buffer 2 (2 bytes).

“—-End address+1 of this text buffer (4 bytes).

" Starting address of this text buffer (4 bytes).

120

Form ¥28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

REFERENCE DATA FOR FINAL PROCESSING -- LEVEL E

The following reference data is used during final processing in the level E version of
the linkage editor.

e Partitioned Organization Directory Record

As Received From BLDL

Byte T
0
Name of Load Module (Member or Alias Name)
4
8 . Concatenation
Relative (to beginning of data set) track address of module (TTR) number
12 Byte of binary Alias indicator and Relative (fo beginning of data set)
zeros. * miscellaneous info track address of first text record
16 Continuation of Byte of binary Relative (to beginning of data set)
track address Zeros track address of note list or scatter—
20 translation record Number of entries Module attributes
in note list ** 0,1,2,3,4,5,6,7,8,9,10,11,12,13,R,15
24 Total contiguous quantity of main storage required by the Length (in bytes) of
module first text record
28 Continvation of Module's linkage editor assigned entry point address
length
32 Linkage editor assigned origin of first text record
Length of Scatter
For load modules in scatter format add:
36 List (in bytes) Length of translation table (in bytes) ESDID (CESD entry
number of control
40 section name) for ESDID (CESD entry number of control
first text record section name) containing entry point
Entry point address
For load modules with RENT or REUS attribute and alias names adds
44 of the member name
48
Member Name
52
SSI Bytes - Aligned on a halfword boundary at the end of the PDS record

Alias indicator and miscellaneous information:

1. Alias indicator -- 0 signifies none, ! signifies alias -- bit 0

2. Number of relative disk addresses (TTR) in user data field -- bits 1,2
3. Length of user data field (in halfwords) -- bits 3-7

PODS Directory Record size:
Block format 36 bytes (with alias names, 46 bytes)
Scatter format 44 bytes (with alias names, 54 bytes)
For SSI, add 4 bytes to sizes given above
*This is normally a zero byte inserted to maintain halfword boundaries.
If the DCB operand was specified as zero and the name was found in the link library, this

byte will contain a 1; if the name was found in the job library, this byte will containa 2.
**This byte contains zero if load module is not in overlay.
R=Reserved

Appendix A: Reference Data For Level E Linkage Editor 121

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Module Attributes

Not an overlay module

Not only loadable

Module contains more than one text record and/oxr
Module contains only one text record and no RLD
Module can be processed by all levels of linkage
Module cannot be reprocessed by linkage editor

Linkage editor assigned origin of first text
record is not zero.
Linkage editor assigned origin of first text

Linkage editor assigned entry point is not zero.
Linkage editor assigned entry point is zero.
Module contains RID record (s) .

Module does not contain an RID record.

Module can be reprocessed by linkage editor.
Module cannot be reprocessed by linkage editor.
Module does not contain TESTRAN symbol records.
Module contains TESTRAN symbol records.

Module is not refreshable

Bit Number Attributes Bit Setting Indication
0 RENT 0 Not re-enterable
1 Re-enterable
1 REUS 0 Not reusatkle
1 Reusable
2 OVLY 0
1 Overlay module
3 TEST 0 Not under test
1 Under test
4 LOAD 0
1 Only loadable*
5 Format 0 Block format
1 Scatter Format
6 Executable 0 Not executable
1 Executable
7 Format 0
RLD record.
1
record.
8 Compatibility 0
editor.
1
E.
9 Format 0
1
record is zero.
10 Format 0
1
1 Format 0
1
12 Editability 0
1
13 Format 0
1
14 Reserved
15 Refreshable 0
1

Module is refreshable

*Module can be loaded only with the LOAD macro instruction. When the module is in main

storage,
instruction.

122

is entered directly,

not through the use of a XCTL, LINK or ATTACH macro

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

® Partitioned Organization Directory Record

As built by linkage editor

As built by linkage editor

t
Byte 2 Name of load module (Member or alias name)
8 Relative (to beginning of data set)track address of Alias indicator and
module. (TTR) miscellaneous info.
12 Relative (to beginning of data set)track address of first Byte of binary
text record. (TTR) zeros.
16 Relative (to beginning of data set)track address of note Number of entries
list or Scatter/translation record, (TTR) in note list.*
20 Module Attributes (see below) Total contiguous main storage required
0,1,2,3,4,5,6,7,8,9,10,11,12,13,R, 15
24 for the module. Length (in bytes) of first text record, Module's linkage
28 editor assigned entry point address Linkage editor assigned origin of
32 first text record
For load modules in scatter format add:
Length of scatter list (in bytes) Length of transla~-
36 tion table . ESDID (CESD entry number of control ESDID (CESD entry
(in bytes) section name) for first text record. number of control
40 section name) cont-
aining entry point. For load modules with RENT or REUS atfribute and Alias
names add:
Entry point address of the member name
44 Member name
48
SS1 Bytes - Aligned on a half-word boundary at the end of the PDS
record.
Alias indicator and miscellaneous information: Note: The record format shown above is the same
1. Alias indicator =-- 0 signifies none, 1 signifies alias -- bit 0 as the corresponding record format for
2. Number of relative track addresses in user data field -- bits 1,2 linkage editor F.
3. Length of user data field (in halfwords) -~ bits 3-7
PODS Directory Record size:
Block format 34 bytes (when rounded to a half-word boundary)
Block format with alias names 44 bytes
Scatter format 42 bytes

Scatter format with alias names 52 bytes
For 551, add 4 bytes to sizes given above

R=Reserved
*This byte contains zero if load module is not in overlay.

Appendix A: Reference Data For Level E Linkage Editor 123

XADDCESD Table - built and referred to XAD2CESD Table - built and referred to
by Cross Reference Table Routine by Cross Reference Table Routine

L8 T [] [S LTI

l_. Address - that is assigned to this sym=- Composite ESD entry number - specifies the CESD entry containing the
bol. (4 bytes) symbol (2 bytes).

Note: There is a one-to-one correspondence between entries in the above tables.

TABLE - referred to by IEWLCBPT.

(LTS T]

LPointel - to beginning of a group of entries in LIST. (2 bytes)

LIST - referred to by IEWLCBPT.

U LTI S I

End of Message Indicator - delimits @ group of entries that define
a message. (1 byte - hex FF)

Pointer - to the first character of a phrase. (2 bytes)

124

OVERLAY TREE STRUCTURE -- LEVEL E

The following are the overlay tree structures for the 15k and 18K versions of the
level E linkage editor.

LEVEL E LINKAGE EDITOR - 15K OVERLAY TREE STRUCTURE

i ! IEWLEROU (Entry Point)

IEWLEAPT
2
IEWLELOG IEWLESCD
IEWLCLDB
3 I_E_WLEINT 4 IEWLEINP [~ |IEWLEADA IEWLCFNL IEWLCMAP
IEWLPOPT \EWLERDS*
10 1
5 |IEWLEMDI ** 8 IEWLCINC
IEWLEQUT
1 IEWLETB] ** IEWLEBTP
IEWLCENT
IEWLCSCN L
6 IEWLERAT 7 IEWLCESD
IEWLCRCG
IEWLCEND
JEWLCSYM L
\ —

Table and Buffer Area (Minimum)
See: Table of Table and Buffer Sizes
Main Storage Allocation Table

Data Management and Control Program Blocks

* Csect within IEWLELOG
** Csects within ITEWLEINP

Appendix A: Reference Data For Level E Linkage Editor 125

LEVEL E LINKAGE EDITOR -- 18K OVERLAY TREE STRUCTURE

] 1 [] iewterou
[EWLEAPT
[EWLELOG
[EWLCLDB
2 | [ewteinT 3 IEWLEINP 6 || IEwLeaDA 7 IEWLESCD
IEWLEOPT IEWLEMDI IEWLEOQUT
JEWLCEND
IEWLCENS
IEWLCESD
[EWLCSYM
IEWLETB1**
IEWLERDS*
IEWLCRCG
43 JEWLCING 51| tewlesen

IEWLCMAP
IEWLCBTP

IEWLCFNL

4 Table and Buffer Are_c; (MT;}mum)

See: Table of Table and Buffer Sizes
Main Storage Allocation Table

Data Management and Control Program Blocks

* Csect within IEWLELOG
** Csects within IEWLEINP

126

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Object Module -- Control Section Cross Reference Table
= i T 1
| Module Name | CSECT Name |
- t 1
| IEWLCBTP | I EWLCBTP |
i IEWLCEND | I EWLCEND |
| IEWLCENS | IEWLCENS i
| I EWLCENT | I EWLCENT |
| IEWLCESD | IEWLCESD |
| IEWLCFNL | IEWLCFNL |
| IEWLCINC | IEWLCINC |
| IEWLCLDB | IEWLCLDB |
| IEWLCMAP | IEWLCMAP |
i I EWLCRCG I I EWLCRCG]
| IEWLCSCN i IEWLCSCN |
| I EWLCSYM | IEWLCSYM {
| IEWLEADA | IEWLEADA |
| I EWLEAPT I I EWLEAPT [
| IEWLEINP | IEWLEINP |
| | IEWLEMDI |
i | IEWLETB1 |
| IEWLEINT | IEWLEINT |
| I EWLELOG | IEWLELOG]
| | IEWLERDS |
| IEWLEOPT | IEWLEOPT |
| IEWLEOUT | IEWLEOUT |
| IEWLEROU | IEWLEROU |
| IEWLESCD | IEWLESCD |
1 IEWLETXR | IEWLERAT [
L 1 -y
General Register Contents at Entry to Modules -- Level E
r 1 1
| Module Entry Point | Register Contents |
F = i
| IEWLCBTP | 2 -- Address of all purpose table |
| | 13 -- Address of APT register save are (REGSR) |
| | 14 -— Return address |
| | 15 -- Entry point address |
t + i
| IEWLCEND { 2 -- Address of all purpose table |
| | *3 -- Address of entry point, if present |
| | *4 -- CSECT length from END card, if present |
| | *5 —— ID of absolute entry point on END card, if present |
| | #6 —-- Address of symbolic name, if present |
| | 13 -- Address of APT register save area (REGSA) |
] { 14 -- Return address |
| | 15 -- Entry point address (IEWLCEND) |
1 } J
r] a
| IEWLCENS | 2 -- Address of all purpose table |
| | 13 -- Save area address |
| | 14 -— Return address |
| | 15 —-- Entry point address |
L 1 —_ J
(Continued)

Appendix A: Reference Data For Level E Linkage Editor 127

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

General Register Contents at Entry to Modules -- Level E (Continued)
r T -
| Module Entry Point | Register Contents |
- + {
| IEWLCENT | 2 -- Address of all purpose table |
| | 13 -- Save area address |
| | 14 -- Return address |
i] 15 -- Entry point address |
1 1
r - ! - 1
i IEWLCESD | 2 -- Address of all purpose table |
i | 4 -- Byte count of ESD items to be processed |
{ | *5 —- ID of first ESD item input]
I | *6 -- Address of first ESD item to be processed |
| | 7 -- Pointer to address specified within IEWLEMDI |
I | 13 -- Address of APT register save area (REGSA) |
| | 14 -- Return address |
| | 15 -— Entry point address |
i i
I T __‘|
| IEWLCFNL | 2 -- Address of all purpose table]
i | 15 —— Entry point address: IEWLCFNL or IEWLCFAB for normal |
| | processing; IEWLFSER for SYNAD exit |
p—- + -4
] IEWLCINC | 2 -- Address of all purpose table |
| | 13 -- Address of APT register save area (REGSA) |
] | 15 -- Entry point address |
i- 3
L) T - “1
[IEWLCMAP | 2 -- Address of all purpose table |
| | 13 -- Address of APT register save area (REGSA)]
| | 14 -- Return address |
| | 15 -- Entry point address |
- - : .
i IEWLCSCN | 1 -- Input record buffer address |
i | 2 -- Address of all purpose table |
i | 13 -- Address of APT register save area (REGSA) |
| | 14 -- Return address |
i | 15 -- Entry point address |
I = - - - {
| IEWLCSYM | 2 -- Address of all purpose table |
| | 4 -- Byte count of TESTRAN data to be processed |
| | 6 —-— Buffer address |
i | 7 -- Pointer to address specified within IEWLEMDI |
| | 13 -- Address of APT register save area (REGSA) |
i | 14 -- Return address]
| | 15 -— Entry point address |
e 1 1
| IEWLEADA | 2 -- Address of all purpose table |
] | 13 -- Address of APT register save area (REGSA) |
i | 15 -— Entry point address |
b 1 1
| IEWLEINP | 2 -- Address of all purpose table |
] | 13 -- Address of APT register save area (REGSA) |
| | 15 -- Entry point address |
E— ¥ ——— -
] IEWLEINT | 1 -- Address of parameter list (first half word of parameter |
| | field is length of field, right justified) |
] | 13 -- Save area address |
| | 14 -- Return address |
| | 15 -- Entry point address |
L 1 ————— J
(Continued)

128

Form ¥Y28-6610-2, Page Revised by TNL ¥28-2301, 1/31/68

General Register Contents at Entry to Modules -- Level E (Continued)

- T 1
| Module Entry Point | Register Contents]
= : !
| ¢ IEWLELOG | 0 -- Error code: bits 0-15 0 i
| | kits 16-19 disposition (1,2,3) |
| | bits 20-23 severity (1,2,3,4) |
| | kits 24-31 message number {
| | 1 -- Address of first symbol to be printed (optional) |
| | 13 -— Address of second symbol to be printed (optional) |
| | 14 -- Return address |
| | 15 -- Entry point address |
- t — -
| IEWLEMDI | 2 -- Address of all purpose table |
| | 13 -— Pointer to address specified within IEWLEMDI |
| | 15 -- Address specified within IEWLEMDI |
b : ~4
| IEWLEOPT | 1 -- Address of parameter 1list (first half word of parameter |
| | field is length of field, right justified) |
| | 2 -- Address of all purpose table {
| | 13 -- Address of APT register save area (REGSA) |
| | 14 -- Return address (INT20A in IEWLEINT) |
| | 15 -- Entry point address |
b + -
| IEWLEOUT | 2 -- Address of all purpose table |
| | 13 -—- Save area address |
| | 14 —— Return address |
| | 15 -- Entry point address |
p-——-- s —- 1
| IEWLEROU | 1 -- Address of parameter list (first half word of parameter |
| | field is length of field, right justified) |
| | 13 -—- Save area address |
| | 14 —-- Return address i
| | 15 -- Entry point address |
- — + -
| IEWLESCD | 2 -- Address of all purpose table |
] | 13 -- HESD address of next ENTAB |
| | 15 -- Entry point address |
R t - =
| TEWLETXR | 2 -- Address of all purpose table |
| (Text | *3 —- Assembled address of first byte of text record |
| Processing) | *4 -- Byte count of text record |
| | *5 —— ID of text record |
| | 6 —-— Storage address of this input text record |
] | 13 —— Address of APT register save area (REGSA) |
| | 14 -- Return address |
| | 15 ——Entry point address (IEWLERAT) i
% + -
| IEWLETXR | 2 -- Address of all purpose table |
| (RLD | *4 -- Byte count of RLD record |
| Processing) | 6 —- Storage address of this RLD record |
| | 13 —— Address of APT register save area (REGSA) |
| | 14 -- Return address]
| | 15 —- Entry point address (IEWLERAT)

% L 1
| *Pertains to editor input.

[—_ 1

Appendix A: Reference Data For Level E Linkage Editor 129

Form Y28-6610-2, Page Revised by TNL ¥Y28-2301, 1/31/68

*¥Built and processed entirely within one routine
**Ma jor communications area throughout linkage editor processing

Table Construction and Usage -- Linkage Editor E
r T H 1
| TABLE | BUILT BY | USED AND/OR MODIFIED BY |
1 4 L 4
r 1 r 4
Alias Table	IEWLCENT	IEWLCFNL
All Purpose Table	IEWLEINT	**
Calls List	IEWLERAT	IFWLCENS
CESD	IEWLCESD	IEWLERAT,IEWLCSCN,IEWLCINC,IEWLCAUT,
		IEWLCENS, IEWLCENT, IEWLEOUT
Delink Table	IEWLCESD	IEWLERAT
Downward Calls List	IEWLCENS	*
Entry List	SCDRELOC	* i
Entry Table (ENTAB)	IEWLESCD	*
Half ESD	IEWLEOUT	IEWLESCD,SCDRELOC
Hafl ESD Prefix	SCDRELOC	*
High ID Table	IEWLEOUT	*
Relocation Constant Table	IEWLEADA	IEWLEOUT
Renumbering Table	IEWLCESD	IEWLERAT
RLD Note List	IEWLERAT	IEWLEOUT,IEWLESCD
Scatter Table	IEWLEOUT	*
SEGLGTH Table	IEWLEADA	*
SEGTAB	IEWLEOUT	SCDRELOC,IEWLCENS
Text Table I & II { IEWLESCD	*	
Text I/0 Table	IEWLERAT	IEWLEOUT,IEWLESCD
Text Note List	IEWLERAT	IEWLEOUT,IEWLESCD I
Translation Table	IEWLEOUT	*
TTR List (TXT I/O Control Table)	IEWLERAT	IEWLEOUT,IEWLESCD
XADDCESD Table	IEWLCMAP	*
XAD2CESD Table	IEWLCMAP	* [
_____ L i {		
]

e o

130

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6U400

A-type constant
Absolute relocation
Absolute relocation factor
Address assignment processor
Address constant 8
branch-type (V-type)
delinking of 29,48,49
non-branch type (A-type)
"split" 44,52
Alias
entry point 43
name 15,35,42,43,54
ALIAS statement 14
processing of 35
Alias table 35,40,u42
All purpose table (APT)
13,17,35,36,101-105
Allocation (ALOC) processor 21
Allocation of main storage 21
Area
user data 35
Attribute and option routine 17
Attributes 12,122
downgrading of 35
passing of 17
Automatic library call
in initial processing 17
in input processing 21
processing of 37
Automatic library call processor 21
operation of 37
Automatic promotion of common 27
Automatic replacement 27

30,45,48

30,43,45,46

45-49
17,22,30,38

29,30,49,50

30, 45-49

Blank common 24,27,49

BLDL macro instruction 35

Block format attribute 13

Boundary alignment factor 39

Buffer relocation constant (BRC) 52
BUFRLD routine 30

BUFTXT routine 28

Calls
across regions 50
automatic library 37
determination of type
downward 42
exclusive 41,50
invalid exclusive 50
library 7
upward 42
Calls 1list 30
CESD 10
processing of 25
record types and subtypes 24
CHANGE statement
processing of 34,1
Channel command word (CCW) 11
Common (CM) 24
non-resolution processing of 26
resolution processing of 27
Common path routine 27

40,41

Composite dictionaries 9
Concatenated data sets (on SYSLIN)
i4,17,21
Control sections
automatic replacement of 27
delinking of 49
Control statement processors 32
Control statement scanner 21
operation of 31
Control/RLD record
Cross-reference table

10,11
14,15

Delink table
Delinking

of common control sections 49

of external symbol 25

of non-branch type (A-type) address

constants 30,48

Dense record 29
Determining ESD type 25
Diagnostic directory print routine 55
Diagnostic message directory 15
Diagnostic messages 14,15
Diagnostic output data set (SYSPRINT)
Directory, microfiche 57-58.2
Downward call 42
Downward calls list 42
Dummy text record 45

25,26,30

END processor
in load module processing 23
in object module processing 22
operation of 31
END statement 8
purge 30
ENTAB 11
computing size of 40
creation of 50
ENTAB RLD buffer 50
Enter routine 26
Entry list 49
Entry point processing
Entry processor 40,42
ENTRY statement 43
processing of 35,42
EOM indicator 8,10
EOS indication 10
Exrror handling, I/0 errors 56
Error logging 55
Error messages 7
ESD 8
record types 24
ESD item
creation of 24
ESD processing 25
ESD processor
in load module processing 24
in object module processing 24
operation of 24
ESDID 9
Executable attribute 13

31,32

Index

INDEX

14

131

Form Y28-6610-2
Page revised 7/23/769 by TNL Y28-6400

Exclusive call 41,50 Load module processor 21
External reference (ER) 2U operation of 23
non-resolution processing cf 26 Loose record 29
ra2solution processing of 26,27
External references 8 Major divisions 13
External symbol dictionary 8 discussion of 17
MAP option 56
Final linked address 39 Microfiche directory 57-58.2
Final processing Module
general 1u attributes 12
Final processor 54 load 8
Final relocation constant 39 object 8
FIND macro instruction 35 overlay 7
Fixed (F) format 14.1 structure 8
Freeline routine 25 Module map 14,15,56
Module map processor 56
Half ESD table (HESD) 43 Multiplicity 28
HESD prefix 52
HIARCHY statement processor 31,34,35 NAME statement 22,55
Hierarchy format 12 processing of 35
High ID table (HIID) 44 NAME statement processor 35
NCAL option 22
IEWLCAD1 routine 42 Node point 34
Include processor 22,35 Non-branch type address constant U45-50
INCLUDE statement 14.1 Non-resolution processing 25,26
in initial processing 14.1 Not editable attribute 13,43
processing of 32 Note list 11,14
with nested members 32 Null type 24
Incompatible module attributes 17 ESD processing of 25,26
Initial processing 14
initial processor 17 Object module
Input pointer 35 structure 8
Input processing 13,14 Object module buffer 21
Iinput processor 21 Object module processor 22
Input text buffer 15 Only loadable attribute 13
Input/ouput error handling 56 OPEN macro instruction 35
Input/output flow 14 Option table 18
INSERT statement Options 7,9
processing of 34.1 passing of 17
Intermediate data set (SYSUT1) 14 Organization 18-20
Intermediate output processor 43 Output module library (SYSLMOD) 14
Intermediate processing Overlay format
general 14 attribute 12
operation 43 module structure for 10
Invalid exclusive call 50 Overlay modules
processing by linkage editor 7
Label definition (LD) 24 OVERLAY statement
changing to LR 25 processing of 33
non-resolution processing of 26
Label reference (LR) 24 P (position) pointer 9
non-resolution processing of 26 PC-delete entry 42
resolution processing of 27 PDS directory 17
Label routine 26 Primary input data set (SYSLIN) 14
LET option 40 Private code (PC) 24
LIBOP routine 38 ESD processing of 25,26
Library calls 7 marked delete 25
Library read block 21,35,37 PROCENTY routine 32
LIBRARY statement 14.1,37 Program modification 7
Linkage editor Pseudo register (PR) 24
general description 8 non-resolution processing of 26
major divisions 13 resolution processing of 26,27
multiple executions of 22 Purpose of linkage editor 7
organization 19-23
purpose 7 R (relocation) pointer 9
relationship to operating system 7 READ8 routine 32
Load module Read blocks 21
structure 8 Reenterable attribute 12
Load module buffer 15 Refreshable attribute 13

132

Form Y28-6610-2

Page revised 7/23/69 by TNL ¥Y28-6400

Register loading
load module processing 23
object module processing 22
Relative relocation 30
Relative relocation factor 45-50
Relocation

of A-type address constants 45-49
of Vv-type address constants 49,50

routine 52

using absolute relocation factor
using relative relocation factor

Relocation constant table 39
Relocation dictionary 9
Relocation factor 30,45
Relocation of address constant 45
branch type (V-type) 49
non-branch type (A-type) U5
Relocation routine 52
Renumber routine 26
Renumbering table (RNT)
in ESD processing 24,26
in TXT processing 28

REPLACE and CHANGE statement processor

REPLACE statement
processing of 43
REPLACE/CHANGE list 24
REPLACE/CHANGE routine 25
Resolution processing 26
Reusable attribute 12
RID 9
flag field processing 30
position pointer 9
relocation pointer 9
RLD buffer 29
RLD note list 29,30
RLD records
in module siructure 9,10
processing of 29

Scatter format

attribute 13

module structure for 11,12
Scatter load option 11
Scatter table 12,43

Scatter/translation record 12,11,43

Second pass processing

general 14

operation 44
Second pass processor 44
Second pass RLD input buffer 44
Second pass RLD output buffer 45
Second pass text buffer 44
Section definition (SD) 24

non-resolution processing of 25

resolution processing of 27
Segment length table (SEGLGTH) 39
Segment relocation constant (SRC)
SEGTAB 12

building of 43
computing size of 3¢
SEGTAl 27,33,50
Serially reusable attribute 1
"Split" address constants &4,
Standard DD names 17
STOW macro instruction 15,35,%
SYM processor
in object module processing IL
SYM recoxrd 10
in input procesczing 14
Symbol resolution 24
SYNAD routine 90
SYSLIB 14,1u.1
SYSLIN 14
SYSLIN buffer 15
SYSLIN DCB, use of 17
SYSLMOD 14
SYSPRINT 14
System status index 3>
SYsuTi 12,14

[S1 S8}

o
5

Temporary linked addresses 39
Temporary relocation constant
TEST option
attribute 13
in load module processing
in object module processirc
module structure fcor 11
Text I/0 control table IR
Text I/0 table 28
Text note list 28
Text records
deletion of 28
dense 29
dummy 45
in module structure 8,11
ioose 29
processing of 2€
Translation table 11.43
TTR list 45,54
TXT and RLD processor
in loaé¢ module processing 23
in object module processing 22
operation 28
TXTIOT routine 28
Unknown (U} fermat 14.1
Upward call 61l

Vector table 2

V-type address constants
ESD items for 24
relccation of 49

Weight factor 21

XDAP 45
XREF option 56

IBM Technical Newsletter File Number

Re: Form No.
This Newsletter No.
Date

Previous Newsletter Nos.

IBM System/360 Operating System
Linkage Editor (E)
Program Logic Manual

S300-31
Y28-6610-2
Y28-6400

July 23, 1969

Y28-2356
Y28-2301

This Technical Newsletter, a part of Release 18 of the
System/360 Operating System, provides replacement pages for the
Linkage Editor (E) Program Logic Manual, Form Y28-6610-2. These
replacement pages remain in effect for subseguent releases unless

specifically altered. Pages to be inserted and/or removed
listed below.

Cover, Preface
Contents, Illustrations
17,18

55,56,56.1

89,90,90.1

101,102

Index

are

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol e to the left of

the caption.

Summary of Amendments

This amendment describes the improved error handling facility
which uses +the SYNADAF macro instruction, and corrects minor

errorse.

Please file this cover letter at the back of the publication to

provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A. Restricted Distribution

IBM Technical Newsletter File Number §360-31

Re: Form No. Y28-6610-2
This Newsletter No. Y28-2356
Date November 15, 1968

Previous Newsletter Nos. Y28-2301

IBM SYSTEM/360 OPERATING SYSTEM
LINKAGE EDITOR (E)
PROGRAM LOGIC MANUAL

This Technical Newsletter, a part of release 17 of the
System/360 Operating System, provides replacement pages for the
Linkage Editor (E) Program Logic Manual, Form Y28-6610-2. These
replacement pages remain in effect for subsequent releases unless
specifically altered. Pages to be inserted and/or removed are
listed below.

Contents
11-14.1
17-18.1
31-34.1
39-44.1
81,82
101,102
105,106
Index

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol e to the 1left of
the caption.

Summary of Amendments

This amendment describes how the linkage editor can produce a
load module capable of being loaded by the control program into
either processor storage or 2361 Core Storage.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

IBM Technical Newsletter File Number

Re: Form No.

This Newsletter No.

-

Y28-6610-2

Y28-2301

Date January 31,

IBM SYSTEM/360 OPERATING SYSTEM

LINKAGE EDITOR (E) . Previous Newsletter Nos.

PROGRAM LOGIC MANUAL

This publication corresponds to Release 15 and contains amend-
ments to the Linkage Editor E PLM publication. Replacement and/or
supplemental pages to be inserted in the publication are noted
below. Corrections and additions to text and/or illustrations are
indicated by a vertical bar to the left of the text or illustra-
tion and a bullet (¢) to the left of the illustration caption.

Pages to Be Pages to Be
Inserted Removed

Cover, Preface Cover, Preface
Contents, Illustrations Contents, Illustrations
7-14.1 7-14

17,18 17,18

21,22 21,22

45,46 45,46

49,50 49,50

57-58.3 57,58

89,90 89,90

101,102 101,102
121-130 121-141

Index Index

Summary of Amendments

This amendment deletes information pertaining to the #4K
version of the level E linkage editor, and describes modifications
for automatic system recovery (ASR), an optional feature that may
be included in model 65 configurations using the MFT or MVT
versions of the operating system (pages 13, 17, 102, 121-123).

This amendment also provides:

e Corrections to Figure 2 (page 10), Figure 19 (page 46) , and
Figure 22 (page 50).

e A microfiche directory (pages 57-58.3).

A table describing the contents of registers when modules are

entered (pages 127-129).

e A table describing where tables are constructed and used (page
130) . i

A reorganization of Table 2 (page 22).

e A note that the I/0 conventions and record formats for linkage
editor E and linkage editor F are the same (pages 90, 123).

Note: Please file this cover letter at the back of the publica-
tion. Cover letters provide a quick reference to changes and a
means of checking receipt of all amendments.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A. RESTRICTED DISTRIBUTION

READER’S COMMENT FORM

IBM System/360 Operating System Form Y28-6610-2
Linkage Editor
Program Logic Manual

® Is the material: Yes No
Easy toread? O O
Well organized? O O
Complete? O O
Well illustrated? ... O O
Accurate? ... 1 O
Suitable for its intended audience? 0]

¢ How did you use this publication?

(] As an introduction to the subject Other 4
[] For additional knowledge

® Please check the items that describe your position:

[] Customer personnel [Operator [] Sales Representative
O IBM personnel (1 Programmer (] Systems Engineer
] Manager [Customer Engineer [} Trainee
[] Systems Analyst] Instructor Other
® Please check specific criticism(s), give page number(s), and explain below:
[J Clarification on page(s) (] Deletion on page(s) = . .
] Addition on page(s) [0 Error on page(s)
Explanation:

® Thank your for your cooperation. No postage necessary if mailed in the U.S.A.

Y 28-6610-2

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

..
..

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP. NECESSARY IF MAILED IN U. S. A,

POSTAGE WILL BE PAID BY

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

..

BBV

®

International Business Machines Corporation
“Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

- IBM World Trade Corporation
‘821 United Nations Plaza, New York, New York 10017
[International]

"YUSTN UL paluLd 09g/S Wl

178

7-0199-8Z A

Y28-6610-2

IS

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

Z-0199-8TA °V°S'M ui peiuld 09g/S Wl

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014.0
	014.1
	015
	016
	017
	018.0
	018.1
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034.0
	034.1
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044.0
	044.1
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056.0
	056.1
	057
	058.0
	058.1
	058.2
	058.3
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	_01
	_02
	_03
	replyA
	replyB
	xBack

